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FOREWARD

The 1997 and 1978 Geological Association of New Jersey (GANJ) meetings will
focus on the Economic Geology of New Jersey. The theme of this year's GANJ is the
"Economic Geology of Northern New Jersey" and the theme of next year's GANJ meeting
will be "Economic Geology of Central and Southetn New Jersey". We are very fortunate
to have Robert Metsger, the chief geologist (retired) of the New Jersey Zinc Co. speaking
on and leading the field trip to the Sterling Hill Zinc mine. We also thank the other
speakers and ficld trip leaders, Richard A. Volkert, Craig A. Johnson, Donald H .
Monteverde, Warren Cummings and J. Mark Zdepski. In addition, we thank Charles B.
Sclar. Without their participation this meeting would be impossible. We are grateful to
Medusa Minerals Inc. for granting permission for the November 1, 1997 site visit to the
Lime Crest quarry. Finally, we hope that you will find this meeting both enjoyable and
educational.

Alan I. Benimoff
John H. Puffer
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OCCURRENCE AND ORIGIN OF GRAPHITE DEPOSITS IN MIDDLE
PROTEROZOIC ROCKS OF THE NEW JERSEY HIGHLANDS

Richard A. Volkert
New Jersey Geological Survey
P.O. Box 427
Trenton, NJ 08625

INTRODUCTION

Middle Proterozoic rocks of the New Jersey Highlands (fig. 1) consist of a heterogeneous
assemblage of metavolcanic, metasedimentary, and granitoid rocks. The oldest of these are in-
ferred to be plagioclase-rich gneiss and granite and metabasalt of the Losee Metamorphic Suite
(Drake, 1984; Puffer and Volkert, 1991). They are associated spatially with quartz-rich and
quartz-poor charnockitic (hypersthene-bearing) rocks with which they appear to be cogenetic
(Volkert, 1993; Volkert and Drake, in press). Collectively, these rocks underlie approximately 20
percent of the Highlands.

The aforementioned rocks are unconformably overlain by a sequence of metasedimentary
rocks that are comprised of quartzofeldspathic gneisses, calc-silicate rocks, metaquartzite, and
marble. Quartzofeldspathic gneisses include potassic feldspar gneiss, microcline gneiss, biotite-
quartz-feldspar gneiss, and horblende-quartz-feldspar gneiss. Collectively, they underlic
approximately 10 to 15 percent of the Highlands. Calc-silicate rocks include clinopyroxene-
quartz-feldspar gneiss, pyroxene gneiss, clinopyroxene-epidote gneiss, quartz-scapolite gneiss,
epidote gneiss, diopsidite, and hornblende-pyroxene skarn. Collectively they underlie approxi-
mately 7 to 10 percent of the Highlands. Metaquartzite is sparsely exposed, underlying less than
1 percent of the Highlands, but is a lithologically significant unit that provides an excelient
stratigraphic and structural marker. Marble, although widespread, underlies only about 5 percent
of the Highlands mainly west of the Green Pond Mountain region.

Amphibolite formed from different protoliths is ubiquitous and is associated with most
Middle Proterozoic rocks.

Widespread granitoid rocks include the hornblende and biotite-bearing rocks of the
Byram Intrusive Suite, the clinopyroxene-bearing rocks of the Lake Hopatcong Intrusive Suite,
and the Mount Eve Granite. Collectively, granitoid rocks underlie approximately 55 percent of
the Highlands, although the Mount Eve is confined to the extreme northern Highlands in Sussex
County.

GRAPHITE OCCURRENCE

The occurrence of graphite in New Jersey is restricted principally to Middle Proterozoic
rocks of the Highlands. It is absent elsewhere in the state except as rare detritus in younger rocks
and sediments.

In Benimaff, A.I, and Puffer, J H, (editors), The economic geology of northern New Jersey:
Field Guide and Proceedings of the fourteenth annual meeting of the Geological Association of New Jersey, 1997, p 1-19
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Figure 1. Generalized geologic map of northern New Jersey showing areal extent of Middle
Proterozoic rocks of the Highlands (patterned). Dotted line marks the limit of Wisconsinan
terminal moraine. Small inset map locates area shown. Triangles denote locations of graphite
mines numbered as in table | and figure 2. Abbreviations of 7.5-minute quadrangles are: FR
Franklin; NFD, Newfoundland; WQ, Wanaque; PP, Pompton Plains; MO, Morristown; ME,
Mendham; CH, Chester; HK, Hackettstown; HB, High Bridge; CAL, Califon; and GL,
Gladstone.

)



Graphite is present in a number of Middle Proterozoic rocks, typically in trace amounts that
seldom exceed a few tenths of a volume percent of the rock. Only biotite-quartz-feldspar gneiss
and metaquartzite and some pegmatite contain graphite in sufficient quantity to constitute
commercially exploitable ore deposits. Virtually all of the graphite deposits in the Highlands are
confined to the southeast-central part (fig. 2) where they occur along similar trends in the High
Bridge, Califon, Gladstone, Chester, Mendham, and Morristown quadrangles. Exceptions are
deposits in the Pompton Plains, Wanaque, and Franklin quadrangles. The Franklin occurrence is
the only known worked graphite deposit west of the Green Pond Mountain region. Middle
Proterozoic rocks in the southwestern Highlands are sparsely graphitic and no deposits or
concentrations of this mineral are known from there (A.A. Drake Jr., personal communication,
1997).

It is especially noteworthy that graphite deposits in southeastern Pennsylvania (Miller,
1912) and the Adirondack Mountains in New York (Alling, 1918) are predominantly hosted by
the same sequence of Middle Proterozoic rocks as the deposits in New Jersey, namely biotite-
quartz-feldspar gneiss, metaquartzite, and pegmatite. Miller (1912) may have been the first to
recognize the similarity of the Pennsylvania and New York host rocks. His observation that
metaquartzite is less abundant in Pennsylvania is consistent with the overall thinning of this
lithology along strike from New York to Pennsylvania.

In most of the New Jersey Highlands deposits, graphite occurs as plates up to a few tenths
of an inch in diameter, although very locally in pegmatite the plates may reach 1 inch or more in
diameter. Except in pegmatite, graphite is concentrated mainly along foliation surfaces and,
where present in abundance, occasionally imparts a schistose fabric to the rock. The following
Middle Proterozoic rocks have been noted to contain graphite.

Metavolcanic Rocks
Hypersthene-quartz-plagioclase gneiss

Quartz-bearing charnockitic gneiss is composed of plagioclase (oligoclase to andesine),
quartz, clinopyroxene, hornblende, biotite, hypersthene, minor potassic feldspar, and opaque
minerals. Graphite occurs very locally in some exposures of this unit in the Franklin and New-
foundland quadrangles and rarely exceeds more than a few tenths of a volume percent of the
rock.

Biotite-quartz-plagioclase gneiss

This unit contains quartz, plagioclase (oligoclase or andesine), biotite, and sparse
hornblende. The quartz content is somewhat variable and in the Chester quadrangle this unit
grades over short distances into biotite-plagioclase gneiss + hornblende. Graphite in these rocks
in the Newfoundland and Chester quadrangles occurs very locally and does not exceed a few
tenths of a percent of the rock. In Newfoundland, graphitic biotite-quartz-plagioclase gneiss is
conformably interlayered with graphitic hypersthene-quartz-plagioclase gneiss. In Chester, both
quartz-bearing and quartz-deficient graphitic biotite-quartz-plagioclase gneiss are spatially
associated with graphitic biotite-quartz-feldspar gneiss.
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Figure 2. Spatial distribution of biotite-quartz-feldspar gneiss and marble in the New Jersaey
Highlands (modified from Drake and others, 1996). Triangles locate known graphite mines.
These are: 1) unnamed; 2) Bloomingdale; 3) unnamed; 4) Betts' exploration; 5) unnamed, 6)
Dickson; 7) Englemann; 8) Fisher; 9) Sutton; 10) Annandale; 11) Beavers'; 12) "High Bridge";
and 13) Hackett.
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Quartzofeldspathic Metasedimentary Rocks
Biotite-quartz-feldspar gneiss

Biotite-quartz-feldspar gneiss is composed principally of quartz, oligoclase and
microcline in varying proportions, and biotite. Garnet and sillimanite are common accessory
minerals, but graphite is exclusively confined to the variant that contains pyrite and weathers
rusty. Graphite typically comprises less than 1 percent of the rock, but occasionally may exceed
30 percent or more where this unit hosts graphite deposits. The distribution of biotite-quartz-
feldspar in the Highlands is shown in figure 2.

Locally graphitic, feldspathic metaquartzite layers generally less than 10 feet thick are
common within the rusty-weathering type of biotite-quartz-feldspar gneiss. Thin, conformable,
graphite-bearing calc-silicate layers are spatially associated with biotite-quartz-feldspar gneiss in
the Gladstone, High Bridge, and Pompton Plains quadrangles.

The origin of biotite-quartz-feldspar gneiss, as well as the other graphitic metasedimen-
tary rocks mentioned, will be discussed in more detail later in this paper.

Calc-Silicate Metasedimentary Rocks
Pyroxene gneiss

Pyroxene gneiss is composed of oligoclase, clinopyroxene, and variable amounts of
quartz. Titanite is as a common accessory mineral. Graphite-bearing pyroxene gneiss is exposed
in the Newfoundland, High Bridge, and Califon quadrangles. Hague and others (1956) describe
an exposure of graphitic pyroxene gneiss in the Franklin quadrangle, and Offield (1967) mapped
graphitic pyroxene gneiss in the Greenwood Lake quadrangle in southern New York that is
gradational with graphitic quartzose gneiss. Graphite content in pyroxene gneiss rarely exceeds
more than 1 percent of the rock,

Throughout the Highlands, pyroxene gneiss and rusty-weathering, sulfidic, biotite-
quartz-feldspar gneiss commonly occur together in conformable contact.

Epidote gneiss

This unit is composed primarily of epidote, with minor amounts of bronze-colored mica
(pholgopite?), scapolite, and trace amounts of titanite. The epidote is clinozoisite. Graphite
contents range from a few tenths of a percent to 3 or 4 percent. However, Bayley and others
(1914) describe a similar rock from the Englemann mine in the Chester quadrangle that is
abundantly graphitic. ‘

Graphitic epidote gneiss is best exposed in the Gladstone and High Bridge quadrangles
where it is spatially associated with graphitic biotite-quartz-feldspar gneiss and metaquartzite.
Epidote gneiss in the Gladstone quadrangle, although never mined, locally appears to contain up
to 10 percent graphite. Bayley and others (1914) noted pieces of marble on the dump of the



prospect in the Chester quadrangle; therefore, graphitic epidote gneiss is spatially associated with
both rock types.

Diopsidite

Diopsidite is spatsely exposed in the Highlands as thin lenses and layers that are typically
associated with pyroxene gneiss, but in the Pompton Plains and High Bridge quadrangles it is
associated with biotite-quartz-feldspar gneiss. Diopsidite is a medium-grained, light green, nearly
monomineralic rock composed of clinopyroxene that has the composition of diopside.
Geochemical analysis of diopside from pegmatite spatially associated with diopsidite at the
Bloomingdale mine has the following composition in weight percent:

Si0, 54.32
ALO, 0.92
Feo'  5.40
MgO 17.89
Ca0O 20.85
Nazo 034
K,0  0.06
Total 99.78

Diopsidite occasionally contains up to 15 percent graphite where associated with rusty-
weathering biotite-quartz-feldspar gneiss.

Other Metasedimentary Rocks
Metaquartzite

Metaquartzite occurs as thin lenses and layers scattered throughout the Highlands but is
most abundant in the Wanaque and Mendham quadrangles. In Wanaque it is interlayered with
pyroxene gneiss and marble, whereas in Mendham it occurs with rusty-weathering biotite-
quartz-feldspar gneiss.

Metaquartzite associated with pyroxene gneiss and marble often contains plagioclase,
scapolite and/or clinopyroxene and commonly contains graphite. Metaquartzite associated with
biotite-quartz-feldspar gneiss contains feldspar, sometimes in sufficient quantity that the rock
approaches a quartz-feldspar gneiss. Metaquartzite locally grades into biotite-quartz-feldspar
gneiss with an increase in the biotite content. Its association with rusty-weathering biotite-
quartz-feldspar gneiss is especially significant as these rocks appear to host many of the graphite
deposits in the Highlands. Typical graphite content of metaquartzite is less than 1 percent, but
locally ranges up to 40 percent where this unit hosts graphite deposits. Modal analyses of
metaquartzite from some of these deposits are given in table 1.



Marble

Most marble is a calcitic to locally dolomitic rock that commonly contains graphite,
phlogopite, chondrodite, and clinopyroxene. While graphite is nearly ubiguitous in marble as
disseminated plates, it is not present in commercial quantities and seldom exceeds more than a
few percent of the rock (Spencer and others, 1908). This is typical of the Franklin and Wildcat
bands of marble mapped in the Franklin area and the northwest Highlands by New Jersey Zinc
Company geologists (Hague and others, 1956).

Other pods, lenses, and layers of marble in the Highlands mainly east of the Green Pond
Mountain region are sparsely graphitic and contain characteristic serpentine minerals. It is this
type of marble that is associated with graphite deposits in the Highlands. Because these bodies of
marble are spatially associated with the same rocks as marble in the Franklin area, Volkert and
Drake (in press) chronocorrelate them with the Franklin, although it is recognized that they may
not occur at the same stratigraphic level. The distribution of marble in the Highlands is shown in
figure 2.

Intrusive Rocks
Byram Intrusive Suite

Granitoid rocks of the Byram Intrusive Suite consist of hornblende =+ biotite, quartz in
varying amounts, microcline microperthite and oligoclase. Graphite is present very locally in a
few outcrops of hornblende granite near the Sutton mine in the Califon quadrangle, where it
comprises less than 2 percent of the rock. Graphite has not been recognized in any rocks of the
Lake Hopatcong Intrusive Suite or in the Mount Eve Granite.

Pegmatite

Two types of pegmatite that locally contain graphite occur in the Highlands. They are
referred to here as metamorphic pegmatite, resulting from local melting of the host rock mainly
in situ, and magmatic pegmatite, of which most are related petrogenetically to the Byram
Intrusive Suite.

Metamorphic pegmatites are graphitic only where they are generated within, or intrude,
graphitic metasedimentary rocks, most notably biotite-quartz-feldspar gneiss. These pegmatites
form thin-to-thick, coarse-grained seams and layers that are mainly conformable to foliation and
less often discordant. They are composed of quartz, microcline, oligoclase, and biotite. Graphite
generally is disseminated throughout these pegmatites.

Magmatic pegmatites appear to contain graphite only where they intrude known
graphite-bearing rocks. Magmatic pegmatites form thin-to-thick seams and veins that may be
conformable to foliation but most often are discordant. They are primarily composed of quartz
and microcline microperthite, with variable amounts of oligoclase and biotite + hornblende.
Graphite in magmatic pegmatites is seldom disseminated throughout the rock and is usually



confined to its contact with the intruded graphitic lithology. There it occurs in veins and masses,
or as large plates covering, and slightly intergrown with, mineral grains in the pegmatite.
Magmatic pegmatites are generally devoid of graphite more than a few feet away from this
contact.

ORIGIN OF GRAPHITE IN THE HIGHLANDS
Geology of the host rocks

A fundamental issue in the genesis of graphite in the Highlands is the source of the
requisite carbon. In order to address this we must first look at the rocks hosting the deposits.
Graphite deposits in the Highlands are neither widespread, nor are they random occurrences.
They appear to be restricted geographically as well as stratigraphically, and occur principally in
marine sediments (metaquartzite and biotite-quartz-feldspar gneiss) and, to a lesser extent,
pegmatite.

The marine origin of these sediments has been determined through detailed geochemistry
and comparison with past and present sedimentary basinal analogs (Volkert, 1993; Volkert and
Drake, in press). Further support for a marine origin comes from the recognition of relict pillow
structures in amphibolite associated with the Franklin Marble (Hague and others, 1956) that has

Table 1. Modes of metaquartzite from Highlands graphite deposits [Based on 800 points.
Analyst: R, Volkert; --, not present]

Mine Unnamed Unnamed Annandale "High Bridge"
Number” 1 5 10 12
Quartz 54.6 54.1 48.7 61.1
K-feldspar’ 25.8 14.1 19.2 10.9
Plagioclase -- trace 4.9 trace
Graphite 17.2 309 23.1 23.2
Sillimanite -- - 0.8 -
Biotite -- 0.1 trace 1.8
Hornblende -- 0.2 -- -~
Garnet -- - 1.2 --
Opaque2 0.3 trace 0.1 trace
Other’ 2.1 0.6 1.9 3.0
Total 100.0 100.0 100.0 100.0

"Numbered as in figure l;lIncludes microperthite2 ;Mainly iron sulfide
3Mainly alteration products




a mid-ocean ridge geochemical affinity (Volkert and others, 1986).

The majority of metaquartzite is metamorphosed impure quartzose sandstone. Abundant
feldspar contents of some metaquartzite suggest that these rocks were locally fairly argillaceous.
The pervasiveness of metaquartzite sequences hosting, or associated with, graphite deposits in
the Highlands, as well as their conformable and gradational contact with biotite-quartz-feldspar
gneiss argues against their origin as anatectic quartz segregations or as hydrothermal quartz.
Biotite-quartz-feldspar gneiss has the composition of graywacke sandstone or siliceous shale that
occastonally grades into calcareous variants of the same. Pyroxene gneiss has a composition that
ranges from calcareous sandstone to shaly sandstone, occasionally grading into siliceous
limestone. Diopsidite has been interpreted by Volkert and Drake (in press) to be metamorphosed
cherty dolomite. Marble is metamorphosed, locally siliceous limestone and lesser dolomitic lime-
stone.

This interlayered lithologic sequence represents sedimentation during the Middle
Proterozoic in a marine shelf environment along the Laurentian (eastern North American) conti-
nental margin. A minimum age for this sequence is provided by a 27pp2%p, age of 1100 Ma
from galena that cuts a gneiss fragment within the Franklin Marble at the Sterling Hill zinc mine
(Metsger, 1977).

Metamorphic conditions and fluid composition

Middle Proterozoic rocks in the New Jersey Highlands were metamorphosed at granulite
facies during Grenville orogenesis. Estimates of temperature (T) and pressure (P) during regional
metamorphism of the metasedimentary rocks are reasonably constrained by their mineral
assemblages. The equilibrium assemblage K-feldspar + sillimanite + garnet + biotite +
plagioclase + quartz in biotite-quartz-feldspar gneiss hosting many of the graphite deposits is
diagnostic of granulite facies. Local melting of this rock, and the generation of metamorphic
pegmatite, define a lower limit for the P-T conditions within the sillimanite field to the granite
minimum melt that occurs at ~650°C at 5 kb (fig. 3).

Based on franklinite-gahnite intergrowths in zinc ore at the Sterling Hill mine in the
Franklin quadrangle, Carvalho and Sclar (1988) obtained a temperature of 760°C during
metamorphism of the ore hosted by the Franklin Marble. Using pyroxene, garnet-biotite, and
sphalerite-pyrrhotite-pyrite geothermometry, Hewins and Yersak (1977) obtained temperatures
of 680° to 750°C and a pressure of about 5 kb from the same study area. Based on Fe-Ti oxides
from mineral assemblages at the Edison mine in the Franklin quadrangle, Puffer and others
(1993) obtained a temperature of 732°C for the quartzofeldspathic gneiss host rock, 706° to
748°C for coexisting magnetite-ilmenite in the Fe ore, and water fugacity of 5044.4 atmospheres,
or 5.1 kb. Other temperatures have been reported for Highlands granitoid rocks, but they likely
record peak crystallization temperatures rather than metamorphic temperatures and have little
relevance in the following discussion,

Using the above data for T and P, as well as experimental data, certain assumptions may
be made regarding the oxygen fugacity (fo,) and fluid composition that was in equilibrium with
graphite during granulite facies metamorphism in the Highlands. Under a confining pressure of



about 5 kb and temperatures of 700°C to 760°C, the gas and fluid phases present would have
coexisted as a supercritical fluid rather than separate phases. Given these conditions it is
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Figure 3. P-T diagram from Kerrick (1972) showing the phase boundaries for kyanite (Ky),
andalusite (And), and sillimanite (Sill), and the granite minimum melting curve. Highlands
metasedimentary rocks plot within the diagonal ruled field to the right of the sillimanite+K-
feldspar+liquid curve at Xy, <0.5.

reasonable to assume that the load pressure (P,,,y) _ fluid pressure (Pquig) and that the Pg,;y  gas
pressure (Py,). That is, the total pressure was roughly equal to the sum of the partial pressures of
the predominant gas phases in the fluid, namely PH,0 + PCH, + PCO, + PCO + PO, + PH, +
PH,S and, therefore, about 5 kb.

Under granulite facies conditions the presence of graphite in a rock exerts a strong control
on fo, and constrains it to the stability field of magnetite at a point on, or below, the quartz-
fayalite-magnetite (QFM) buffer (fig. 4). Graphite is unstable under more oxidizing conditions
above this curve and converts into a CO,-rich phase. As seen on figure 4, the graphite stability
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surface is both temperature and pressure dependent. With increasing T and decreasing P, the
graphite-gas buffer curves intersect more reduced oxygen buffers. Using the following equation
from French and Eugster (1965)
log fo,=-(20,586/T) - 0.044 + log Py, - 0.028 (P, - 1)/T
|0‘5 T T T T T T T T T
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Figure 4. Log fo,-temperature diagram from French and Eugster (1965) for the graphite-gas
buffer at total gas pressures of 1 bar to 2 kb (solid lines). Oxygen buffer assemblages (dashed
lines) are: HM, hematite+magnetite; NNO, nickel+bunsenite; QFM, quartz+fayalite+tmagnetite;
MI, magnetite+iron; MW, magnetite+wustite; and WI, wustite+iron.

values of log fo, were calculated for a gas phase in equilibrium with graphite at T of 700° and
760°C and P 0f 5 kb. These values are -17.27 and -16.05 respectively and, as shown in figure
4, they are conicidant with the QFM buffer curve. They represent the highest fo, values
permissible for the stability of graphite under the T and P conditions inferred for the Highlands
and probably were lower as the temperature increased and conditions were more reduced.
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Common volatile species in the C-O-H-S system present in a fluid during regional
metamorphism include H,0, CO,, CO, O,, CH,, H,, and H,S. Only a few of these occur in
significant proportion and they are responsible for determining the Pyqs- The principal species in
equilibrium with graphite at temperatures <800°C and pressures >2kb are H,0, CO,, CH, and
H,S (French, 1966; Ohmoto and Kerrick, 1977; Frost, 1979; fig. 5). The presence of sulfide
minerals coexisting with graphite in the Highlands (table 1) suggests that H,S was present
locally. It was likely generated internally through desulfidation reactions. H,0 was derived
mainly from internal sources through devolitilization reactions during prograde metamorphism.

] OOO o ] M v ‘ T B T - T ¥ T
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£, bars

200
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200 400 600 800 1000 1200
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Figure 5. Relative proportion of species in a C-O-H fluid in equilibrium with graphite at total gas
pressure of | kb. Diagram from French (1966).

CO, was derived externally through decarbonation reactions involving marble and/or caic-
silicate rocks, and where they were absent, internally, where along with CH, it was produced
through the interaction of H,O with carbonaceous material in the rock. This is shown by the
following reaction from Ohmoto and Kerrick (1977)

2C+2H,0 = CO,+CH,.

12



At relatively high values of fo, such as those calculated for the Highlands, the main fluid
species present would have been a mixture of H,O, CO, and CH, (fig. 5). Because higher
temperature has the effect of increasing the amount of H,S present (Poulson and Ohmoto, 1989),
this was probably a locally important species also. The proportions of these species present in the
fluid would have varied depending on the composition of the rock undergoing metamor- phism.
For example, graphite-bearing marble and calc-silicate rock would have been in equilibrium with
a mixture of predominantly CO, and H,0O, whereas sulfidic biotite-quartz-feldspar gneiss and
metaquartzite would have been in equilibrium with H,O and CH,+CO,. Calcareous layers
within, or adjacent to, the gneiss would have created a more open-system condition resulting in a
fluid containing a mixture of these species. In summary, the volatile species in equilibrium with
graphite in the Highlands are inferred to have been a mixture of mainly H,0, CO,, CH,, and
subordinate H,S.

Sources of carbon and graphite genesis

Sedimentary rocks of Proterozoic age contain an abundant diversity of microorganisms
mainly in the form of bacteria and algae (Salop, 1982; Cloud, 1983}, and the average content of
organic matter as reduced carbon in Proterozoic sediments does not differ significantly from that
in Phanerozoic sediments (Schidlowski, 1982). This idea is not new and a biogenic origin for
reduced carbon in some Proterozoic metasedimentary rocks has long been interpreted (e.g.
Alling, 1918).

Graphite present in metasedimentary rocks in the Highlands is similarly inferred to be
biogenic in origin. This is supported by the following: 1) the occurrence of graphite deposits
primarily in a restricted sequence of marine sediments that represent organic-rich sands and
muds; 2) the uniform occurrence of graphite in these rocks over strike lengths of several hundred
feet to several miles; 3) the stratigraphically conformable relationship of graphite with the host
lithologies; and 4) the apparent lack of field or petrographic evidence to suggest that graphite
layers in the metasedimentary rocks formed by invading fluids.

Much of the organic matter in sediments is consumed by aerobic bacteria prior to
compaction (Schidlowski, 1982). Therefore, to preserve organic matter an unhospitable, anoxic
environment likely existed during the Proterozoic in this marine basin in the Highlands. The
presence of abundant pyrite within graphitic metaquartzite and biotite-quartz-feldspar gneiss
suggests that such an environment did locally exist, as these rocks grade into non-carbonaceous
and non-sulfidic phases of the same units. Organic matter was able to accumulate in this setting
under poorly oxygenated and strongly reducing conditions due to restricted circulation. Whether
this restriction was due to tectonic or climatic factors, or to a combination of controls is
unknown. Under reducing conditions in an anoxic environment the content of organic matter in
sandstones may be equal to that of shale (Oehler and others, 1982) supporting the interpretation
of this study that carbon in the metaquartzite and biotite-quartz-feldspar gneiss protoliths in the
Highlands was primary and biogenic in origin. Likely products of anerobic bacterial decay in this
euxinic environment were the generation of methane and hydrogen sulfide, as well as the
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reduction of sulfate and iron in the sediments, which combined to form the pyrite commonly
found in the graphitic metasedimentary rocks.

Biogenic carbon compounds have distinctive 8'°C isotopic values that range from -25 to
-35%o (Oehler and others, 1972). Although no isotopic analyses have been performed on graphite
from New Jersey, graphite from the Middle Proterozoic Pickering gneiss (correlative with
biotite-quartz-feldspar gneiss in the Highlands) and the Franklin Marble in southeastern
Pennsylvania was analyzed by Crawford and Valley (1990). They obtained 3'C values of -14.4
to -23.8%o from graphite in the gneiss and concluded the source was organic matter in the
sedimentary protolith.

During granulite facies metamorphism in the New Jersey Highlands, graphite in the
gneisses and metaquartzite formed largely in situ from the organic-rich layers that now parallel
compositional layering and foliation. Organic matter probably altered to graphite through the loss
of hydrogen and subsequent recrystallization of carbon as graphite (e.g. Faure, 1986).

A different interpretation is required to explain the occasional presence of graphite in
intrusive rocks of the Highlands, notably magmatic pegmatite, as well as in metavolcanic rocks
(hypersthene-quartz-plagioclase gneiss and biotite-quartz-plagioclase gneiss). It is widely
recognized that juvenile carbon may be a minor component of some igneous magma (Faure,
1986). However, it is unlikely that magmatic carbon was responsible for the graphite in the
Highlands intrusive rocks. If this was the case, graphite should be a more widespread constituent
of granitic rocks and magmatic pegmatite, whereas it is not and occurs mainly where these rocks
intrude graphitic lithologies. Therefore, the evidence suggests that granitic rocks and magmatic
pegmatite locally obtained carbon from carbonaceous metasedimentary rocks during intrusion
and subsequently precipitated graphite along their contacts.

Several theories have been proposed to account for the genesis of graphite. Salotti and
others (1971) propose a reaction whereby hydrogen diffuses into carbonate rocks at temperatures
of 200° to 600°C, reacting with carbonate minerals to form methane. This is shown by the
reaction

CaCO3 + 4H2 = CH4 -+ H20 + Ca(OH)2
The subsequent breakdown of methane produces carbon and hydrogen according to the reaction
CH, = C +2H,.

A problem with this mechanism in terms of the Highlands is the absence of graphite deposits
where granite or pegmatite intrude exposures of marble. Also, if graphite was produced by this
reaction then it should be present in marble adjacent to graphite deposits in the metasedimentary
rocks, when in fact graphite generally is absent in the marble.

Glassley (1982) and Katz (1987) propose that graphite in high-grade metamorphic rocks
forms through the interaction between CO,-rich fluids and H,0. The source of the CO, is postu-
lated as being from the mantle or from metamorphic decarbonation reactions involving carbo-
nate rocks. Graphite forms when the fluid composition is in equilibrium with the mineral assem-
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blage of crustal rocks. This could account for the sparse amounts of graphite in the metavolcanic
rocks, as they are not spatially associated with carbonate rocks or graphite deposits and they
doubtfully contained primary organic carbon.

However, CO, flooding is an unlikely mechanism for other graphite genesis in the
Highlands for the following reasons: 1) graphite should be more widespread and abundant in
rocks of diverse composition; 2) the mineral assemblages of rocks hosting graphite deposits are
relatively uniform and these rocks occur throughout the Highlands, yet they are often barren in
areas proximal to graphite deposits; 3) there appears to be a lack of evidence in the Highlands of
invasion by pervasive CO,-rich fluids (Johnson and others, 1990); and 4) there is a documented
absence in the Adirondack Mountains of pervasive CO,-rich fluid migration during granulite
facies metamorphism (McLelland and others, 1988 and references thercin).

Weis and others (1981) suggest that graphite genesis occurs through a water gas reaction
whereby superheated (700° to 900°C) water vapor reacts with organic matter in metasediments to
produce carbon monoxide according to the following reaction

C+H,0 = CO+H,.
Carbon monoxide then decomposes according to the Boudouard reaction

2C0O = C+CO,,
precipitating graphite at temperatures 50° to 100°C lower (Weis and others, 1981). Temperatures
required for this reaction are in good agreement with those attained in the Highlands during
granulite facies metamorphism.

Rumble and others (1986) propose a mechanism involving the mobilization and transport
of carbon from sediments as carbon dioxide and methane during metamorphic devolitalization
reactions. Graphite precipitation occurs when migrating fluids of differing CO, and CH, ratios
mix in fractures or along permeable zones.

Although any of the above processes are capable of graphite formation, those proposed
by Weis and others (1981) and Rumble and others (1986) appear more consistent with the known
geologic relations in the Highlands. Reactions involving CO, and H, would have increased the
amount of H,O available to diffuse into adjacent wall rocks, accounting for the presence of
hydrous minerals and the local abundance of pegmatite along the margin of the ore body at some
graphite mines.

Graphite genesis in the Highlands undoubtedly had a fairly complex origin in the Middle
Proterozoic involving organic and inorganic sources of carbon. More specific details regarding
the formation of these interesting deposits remain speculative pending intensive mineralogic,
petrologic, and isotopic studies.
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GRAPHITE MINES AND MINING HISTORY IN THE NEW JERSEY HIGHLANDS

Richard A. Volkert
New Jersey Geological Survey
P.O. Box 427
Trenton, New Jersey 08625

INTRODUCTION

Graphite, also known as plumbago and black lead, is a native element composed of
carbon that possesses a metallic luster, a hardness of 1 to 2, and a specific gravity of about 2.23.
Graphite occurs as dark gray to black, tabular, hexagonal flakes or plates, in microcrystalline
form (often referred to as amorphous), and in fibrous, columnar, or radiating aggregates.

The usefulness of graphite for certain applications has been known for centuries as
indicated by the following historical information excerpted from Graffin (1983). The earliest
known use of graphite was by primitive man to draw on cave walls. Egyptians later used it to
decorate pottery, and in Bavaria, in 1400 A.D., crucibles were fashioned from it. Graphite was
first recognized as a distinct mineral species in 1565 by Gessner, and its composition was
determined in 1779 by Scheele. It was named in 1789 by Werner from the Greek word
"graphien” meaning to write.

Graphite is a good conductor of heat and electricity and if protected from oxidation
remains stable to 3,500°C (Weis, 1973). Therefore, its principal uses are as a source of carbon in
steelmaking, for high-quality crucibles and refractory ware, carbon brushes in electric motors,
foundary facings and, to a lesser extent, in dry-cell batteries, lubricants, paint, and pencils
(Evans, 1993). In recent years it has replaced asbestos in the manufacture of brake pads, seen use
in the aerospace and nuclear power industries, and also as a component in military stealth
technology (Asbury Graphite Mills Inc., 1995).

GEOLOGIC SETTING

Middle Proterozoic rocks of the New Jersey Highlands (fig. 1) consist of a heterogeneous
assemblage of metavolcanic, metasedimentary, and metaplutonic lithologies. The occurrence of
graphite in New Jersey is restricted principally to the rocks of the Highlands. It is absent
elsewhere in the State except as rare detritus in younger rocks and sediments.

Graphite is present in a number of Middle Proterozoic rocks, typically in trace amounts
that seldom exceed a few tenths of a volume percent. Of these, biotite-quartz-feldspar gneiss,
metaquartzite, and some pegmatite contain graphite in sufficient quantity to warrant mining.

It is noteworthy that practically all of the graphite deposits are confined to the southeast-
central Highlands (fig. 1) where they occur along similar trends in the High Bridge, Califon,
Gladstone, Chester, Mendham, and Morristown quadrangles. Exceptions are deposits in the
Pompton Plains, Wanaque, and Franklin quadrangles.

In Benimaoff, A.1, and Puffer, J.H., (editors), The economic geology of northern New Jersey:
Field Guide and Proceedings of the fourteenth annual meeting of the Geological Association of New Jersey, 1997, p 21-32.
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Figure 1. Generalized geologic map of northern New Jersey showing Middle Proterozoic rocks
of the Highlands (patterned), Mesozoic rocks of the Newark basin ¢(diagonal ruled), and
Paleozoic rocks of the Valley and Ridge (unpatterned). Small inset map locates area shown.
Triangles denote known graphite mines numbered as in the text. Abbreviations of 7.5-minute
quadrangles are: FR, Franklin; WQ, Wanaque; PP, Pompton Plains; MO, Morristown; ME,
Mendham; CH, Chester; HB, High Bridge; CAL, Califon; and GL, Gladstone. Dotted line marks
limit of Winsonsinan terminal moraine.

22



In most deposits of the New Jersey Highlands, graphite occurs as plates up to a few tenths
of an inch in diameter, although very locally in pegmatite the plates may reach an inch or more in
diameter. Except in pegmatite, graphite is concentrated mainly along foliation surfaces.

MINING HISTORY IN NEW JERSEY

From about 1848 until 1928, various attempts were made to commercially mine graphite
from selected Middle Proterozoic lithologies in the New Jersey Highlands. Most of these mines
occurred on a relatively small scale and quickly encountered financial problems. However, even
the few larger ones had difficulty remaining solvent financially for very long. Part of the prob-
lem involved a technology that, at the time, could not easily and inexpensively separate graphite
from the host rock. As a result, much ore was discarded with the gangue minerals. Problems
arose also through competition from graphite mines in southeastern Pennsylvania, as well as the
numerous Adirondack deposits in New York that exploited more extensive graphite-rich ore
zones. According to Alling (1918), of the total United States output of graphite in 1916 of about
5,000 tons, the leading producers were Alabama, New York, Pennsylvania, California, and
Montana, with New York contributing one fourth of the total.

Figures regarding total extraction of graphite ore from New Jersey are unavailable, and
where mentioned in the historical literature, local production figures are sketchy and incomplete.

Where known, these data are given under the following individual mine descriptions.

Quite possibly the increased use of less costly imported graphite from such localities as
Sri Lantka (Ceylon), or the development of synthetic graphite manufactured from coal in electric
furnaces, or as a by-product of blast furnaces, marked the end of graphite exploration and mining
activity in New Jersey. According to unpublished documents on file at the New Jersey
Geological Survey, between 1928 and 1932 the American Cyanamid Company in Union County
produced 1,005 short tons of artificial graphite.

New Jersey Graphite Mines

The numbers preceding each of the following mines are keyed to the mine numbers in
figure 1. Most of these mines are on private property and their description here does not convey
permission to trespass at these localities.

1. Unnamed mine (Bloomingdale Twp., Wanaque quadrangle)

No historical information is available regarding the name, date of exploration, or the
amount of ore extracted here. Nor is this prospect shown on any historical maps. Two small
prospect pits or filled shafis occur about 60 feet apart in a wooded area south of Wanaqgue
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Reservoir. A small dump occurs adjacent to each of the openings. Judging by the amount of rock
on the dumps, and by the high concentration of graphite that remains in the dump material, it is
doubtful that much ore was removed from this location.

Host rock for the deposit is light gray, medium-fine- to medium-grained feldspathic
metaquartzite approximately 30 feet thick. A sample of this rock from the mine dump contains
17.2 percent graphite (Volkert, 1997). Exploration here predominantly exploited the locally
rusty-weathering sulfidic layers adjacent to the eastern and western contacts with calcitic marble,
although the metaquartzite contains abundant graphite throughout. The marble contains
accessory serpentine minerals, but lacks graphite. Thin layers of calcitic marble here are
conformably interlayered with equally thin layers of pyroxene gneiss that also lack graphite.
Foliation trends N24°E and dips 65° SE, steepening to 83° SE from west to east.

2. Bloomingdale mine (Bloomingdale Twp., Pompton Plains quadrangle)

The Bloomingdale mine was one of the larger graphite mines in the Highlands. It was
first worked about 1864 or before, but by 1868 was idle due to financial problems. The mine
reopened briefly in 1878 under new ownership, closed, and then reopened in 1882 under still
different ownership by the Bloomingdale Graphite Company. Mining proceeded for another year
or two before ceasing permanently.

The original workings consisted of three openings, a shallow open cut and two shafts 20
feet and 60 feet deep (New Jersey Geological Survey, 1879). In 1882, a drift was driven along
* strike of the ore from a depth of 30 feet in the deeper shaft. The mineralized zone was reported as
being at least 16 feet wide and contained up to 11.2 percent graphite (New Jersey Geological
Survey, 1885). No production figures are available prior to 1882, but 300 tons of graphite were
subsequently extracted from the drift (New Jersey Geological Survey, 1883).

A graphite mill was constructed near the Bloomingdale mine, one of only four in the
Highlands, for the separation of ore utilizing a "dry" process. The ore was crushed under stamps,
washed through sieves, and then separated on five different dressing tables into graphite of
various grades. When fully operational, the mill at Bloomingdale was capable of separating a
capacity of 1,000 pounds of ore per day (Darton and others, 1908). At the present time all of the
original mine workings have been developed over and no trace of the mill remains.

Host rocks for the deposit at the Bloomingdale mine are predominantly rusty-weathering,
sulfidic, biotite-quartz-feldspar gneiss and pegmatite. The former grades into conformable layers
of sparsely graphitic metaquartzite and quartz-poor biotite gneiss that is locally sulfidic and
contains up to 30 percent graphite. Thin layers of light green, medium-grained, diopside-rich
rock (diopsidite) each several feet thick and containing up to 10 percent graphite are also
conformably layered with graphitic biotite-quartz-feldspar gneiss and metaquartzite. Graphite in
these rocks is aligned along foliation surfaces and disseminated throughout the rock. Pegmatite is
white or light gray, coarse-grained, unfoliated, slightly discordant, and composed of two distinct
mineral assemblages: 1) microcline microperthite + plagioclase + quartz + biotite and
2) diopsidic pyroxene + plagioclase + quariz + titanite. Graphite is not evenly distributed in
pegmatite and is confined to its contact with the adjacent graphitic gneiss. Graphite plates up to
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1 inch in diameter occur in the pegmatite where they form around, and are embedded in, feldspar
grains and less often quartz. Pegmatite occurs along the contact between biotite-quartz-feldspar
gneiss and diopsidite and pegmatite mineral assemblages suggest that they represent local melt
from these rocks. Foliation in the vicinity of the Bloomingdale mine trends N30°E to N55°E and
dips 45° to 60° SE.

3. Unnamed mine (Jefferson Twp., Franklin quadrangle)

According to the description given in Baker and Buddington (1970), a few prospect pits
were dug into graphitic biotite-quartz-feldspar gneiss and graphitic pegmatite seams "near Oak
Ridge Reservoit". No additional information is available regarding this exploration. One can
assume that it was quite small and probably not much, if any, ore was removed from here. Host
rock is rusty-weathering biotite-quartz-feldspar gneiss and the foliation in the area trends N30°E
and dips 80° SE (Baker and Buddington, 1970).

4. Betts' exploration (Morris Twp., Morristown quadrangle)

Mining at this location occurred shortly prior to 1868 on the property of the Betts farm,
but apparently had ceased by that year. Several shafts of indeterminate depth were sunk along the
ore zone which returned rock containing an average of 6 percent graphite (Bayley and others,
1914). Nothing remains of any of the workings. The exact location is speculative, but assumed to
be on or near the Betts property shown on historical maps of Morris County.

Host rock for the ore probably is light gray, medium-grained, graphitic, feldspathic
metaquartzite. This has been mapped in the vicinity of the Betts farm property (Volkert, 1988b)
where it is conformably interlayered with rusty-weathering, sulfidic, graphite-biotite-quartz-
feldspar gneiss that trends about N20°E and dips 82° NW to vertical.

3. Unnamed mine (Morris Twp., Mendham quadrangle)

No historical information is available regarding the name, dates of exploration, or the
amount of ore extracted here. Nor is this prospect shown on any of the historical maps of Morris
County. The remains of a single small shaft and dump occur along the side of a stream south of
Route 24.

As with most of the other graphite prospects in the area, the host rock for the deposit is
light gray, medium-grained, well-layered, locally schistose, feldspathic metaquartzite that is
conformably interlayered with rusty-weathering, sulfidic, garnet-biotite-quartz-feldspar gneiss
(Volkert, 1988a). While both units contain graphite, ore was extracted principally from the
metaquartzite, which locally contains up to 30.9 percent graphite (Volkert, 1997). Foliation
trends N35°W and dips 40° NE.
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6. Dickson mine (Mendham Twp., Mendham quadrangle)

No information is available for this mine despite the fact that graphite was present here in
sufficient quantity that a mill was constructed. The only reference to this particular operation is a
single sentence in Bayley and others (1914). Although the location is reported as being on the
road between Brookside and Washington Corners, this mine is not shown on any historical maps
of Morris County. If the location is as described, this mine has been completely developed over.

Host rock for the deposit is light gray, medium-grained, well-layered, feldspathic
metaquartzite. This is conformably interlayered with rusty-weathering, sulfidic, garnet-
sillimanite-biotite-quartz-feldspar gneiss (Volkert, 1988a). This sequence of rocks trends N75°E
and dips an average of 51° SE.

7. Englemann mine (Chester Twp., Chester quadrangle)

This mine began operating about 1848 on the farm of Elias Engelmann and likely closed
shortly after. Its location is reported as being along the southeast bank of a ravine east of Peapack
Brook (Cook, 1868). No additional information is available regarding the extent of the workings,
length of operation, or the amount of ore extracted. The width of the mineralized zone varied
between 4 feet and 5 feet and was traceable along strike for several hundred feet. Two samples
from this locality were reported to contain 13.04 and 14.95 percent graphite (New Jersey
Geological Survey, 1879). No trace of the mine workings or dumps could be located.

Host rock for the ore is unknown, although float of medium- grained, graphitic,
feldspathic metaquartzite was observed in the approximate area of the mine, and Bayley and
others (1914) describe graphitic epidote gneiss from the mine dump. The lithologic sequence
here is silicated marble, metaquartzite, epidote gneiss, and quartz- poor pyroxene gneiss (Volkert
and others, 1990). Graphite appears to be absent in the marble and pyroxene gneiss. Foliation in
the area trends about N70°E and dips gently southeast.

8. Fisher mine (Tewksbury Twp., Gladstone quadrangle)

This operation began about 1880 when "machinery” was set up on the farm of C. Fisher
to separate graphite from the country rock (Bayley and others, 1914). The mine was never
worked to much of an extent and was abandoned a short time after opening. No information is
available regarding the extent of the workings, if any, or the amount of graphite extracted here.
No trace of the mine workings could be located, but abundantly graphitic rock was observed in
the area.

Host rock is white or buff, medium-fine- to medium-grained, moderately foliated and
layered, locally rusty-weathering, sulfidic, feldspathic metaquartzite that contains quartz,
feldspar, dark amber to bronze-colored mica (phlogopite?), and graphite. Foliation in the area
trends about N60E and dips 45° SE.
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9. Sutton mine (Tewksbury Twp., Califon quadrangle)

Operation commenced about 1878 on the farm of George B. Sutton near Fairmount from
a single shaft 28 feet deep and two shallow prospect pits. The mineralized zone was reported as
being several yards wide in rock that contained an average of 6.87 percent graphite (New Jersey
Geological Survey, 1879). No trace of the mine workings remain. However, abundantly graphitic
float occurs in fields and on rock fences in the area of the mine.

Host rocks are garnet-sillimanite-biotite-quartz-feldspar gneiss and light gray feldspathic
metaquartzite. These are bounded by medium-grained, moderately foliated hornblende granite
(Volkert, 1989). Samples of biotite-quartz-feldspar gneiss and metaquartzite collected from the
fields for this study contain up to 20 percent graphite. Only a few outcrops of hornblende granite
contain graphite, generally less than 2 percent, adjacent to the contact with graphitic meta-
sedimentary rocks. Foliation is somewhat variable due to folding, but closest to the area of the
mine it trends about N70E and dips gently southeast.

10. Annandale mine (Clinton Twp., Califon quadrangle)

The Annandale graphite mine was the last operating graphite exploration in the High-
lands. Unpublished notes on file at the New Jersey Geological Survey dated May, 1921 by H.B.
Kummel suggest that exploration occurred about 1920 or 1921 on the property of the State
- Reformatory. However, according to the same notes, older workings and a dump were observed
on the site in 1921. The date of these earlier workings is unknown, unless they are part of the
Annandale iron mine which was opened in 1880 (Bayley, 1910).

By 1926, a well equipped and modern milt (fig. 2) had been constructed at the Annandale
graphite mine that was capable of processing 4 tons of ore per day. At the time, graphite was still
being separated from country rock by the "dry" process described earlier for the Bloomingdale
mine. This technique permitted only about 34 percent graphite to be separated after the first run
at the Annandale mill and often required two or three additional runs to separate most of the ore.
Because this proved uneconomical, the mill was shut down sometime between 1926 and 1928
and modified to utilize a new experimental "wet" process. This involved wet grinding followed
by separation of the ore in flotation cells, a technique that reportedly enabled 98 percent of the
ore to be recovered on the first run.

Plans for the construction of a larger mill were abandoned and the Annandale mine was
closed by 1929, despite the extensive and costly development up to that time by the Annandale
Graphite Corporation of Philadelphia. After a change of management, mining resumed in 1931
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Figure 2. Mill of the Annandale Graphite Corporation in Clinton Township, Hunterdon County.
Nothing remains of the original building. Photograph from New Jersey Geological Survey
archives taken in 1928 by M.E. Johnson

28




with the construction of a 600 foot long tunnel into the hillside adjacent to one of the shafts
(ML.E. Johnson, 1931, unpub. notes). The rock penetrated by this tunnel apparently returned only
a small quantity of graphite and the mine again closed, remaining idle from 1931 on.

The principal workings consisted of two shafts 40 to 50 fect deep (H.B. Kummel, 1928,
unpub. notes). Graphite was present as disseminated plates up to 3/8 inch in diameter that were
concentrated along layers parallel to foliation and adjacent to pegmatite intrusions. The width of
the mineralized zone was 18 to 20 feet and the rock within it contained up to 33 percent graphite
(H.B. Kummel, 1928, unpub. notes). The total amount of graphite extracted from this mine is
unknown, but an unpublished document on file at the New Jersey Geological Survey lists a
production figure for 1928 of 50 short tons. The original shaft, although now overgrown and
neatly filled in, is still visible along a deep ravine. Several large mine dumps dot the area, but no
trace of the mill was observed.

Host rocks for the deposit are locally sulfidic biotite-quartz-feldspar gneiss, feldspathic
metaquartzite, and metamorphic pegmatite. A sample of metaquartzite from the mine dump
contains 23.1 percent graphite (Volkert, 1997). Foliation near the Annandale mine trends an
average of N45W and dips vertically.

11. Beavers' mine (Clinton Twp., High Bridge quadrangle)

This mine began operation about 1878 on the farm of Peter A. Beavers with the
development of three prospect pits by the Reading Graphite Company which was leasing the
property at the time. The rock reportedly contained an average of 10.09 percent graphite, and
locally reached 27.82 percent from a mineralized zone approximately 20 feet wide (New Jersey
Geological Survey, 1879). A mill and separator were constructed at High Bridge about 1879,
shortly after the one at Annandale, but for some reason it was never fully operational. No trace of
the old mine workings could be located.

Host rock for the deposit is moderately layered and foliated, locally schistose, medium-
grained, rusty-weathering, sulfidic, biotite-quartz-feldspar gneiss. This is in contact with quartz-
poor pyroxene gneiss that contains sparse amounts of graphite and titanite. Foliation trends about
N45W and dips steeply toward the northeast.

12. "High Bridge" mine (Clinton Twp., High Bridge quadrangle)

The actual location of this mine is uncertain, but the description appears to match that of
abandoned workings near Readingsburg just north of High Bridge. An attempt to mine graphite
at the "High Bridge" mine in 1906 or 1907 resulted in the construction of a tunnel 400 feet long
along strike of a mineralized zone 30 to 50 feet wide (New Jersey Geological Survey, 1907).
Despite the dimension of the ore deposit, the host rock contained only 4 to 8 percent graphite.
The mine was abandoned 7 months after opening, following the removal of just "3.5 carloads" of
ore (New Jersey Geological Survey, 1907). Presently, a vertical, partially filled opening that
extends upslope from the South Branch Raritan River and a few shallow pits rimmed by small
dumps are all that remain. The host rock is light gray, medium-grained, feldspathic meta-
quartzite. This is spatially associated with sparsely graphitic, rusty-weathering biotite-quartz-
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feldspar gneiss that outcrops in the area but is absent on the mine dumps. A sample of the former
from one of the dumps contains 23.2 percent graphite (Volkert, 1997).

Conover mine (Clinton Twp., High Bridge quadrangle)

Mining initially occurred about 1878 on the farm of Charles Conover with the
development of three prospect pits, the deepest of which was 20 feet (New Jersey Geological
Survey, 1879). These were developed in a mineralized zone of unknown width. No figures are
available regarding the extent of the workings or the amount of ore removed. A chemical
analysis of graphite from this locality was reported as containing 95.79 carbon and 3.6 percent
insoluble residue (New Jersey Geological Survey, 1880). Mining operations here had ceased
sometime prior to 1885. Host rock for the deposit is unknown owing to the fact that the Conover
farm property and mine workings could not be located.

13. Hackett mine (Clinton Twp., High Bridge quadrangle)

Property on the farm of William Hackett was leased by the Reading Graphite Company
about 1879 or possibly a few years earlier (New Jersey Geological Survey, 1879). This prospect
was never mentioned again in any subsequent literature. Yet mining, or at least limited
exploration, apparently did occur as the remains are present of a small water-filled shaft
approximately 20 feet long, 6 feet wide, and of indeterminate depth that is rimmed by a small
mine dump.

Host rock for the deposit is medium-grained, moderately-foliated, rusty-weathering,
sulfidic, biotite-quartz-feldspar gneiss. Foliation in the area trends about N45W and dips steeply
northwest. :
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THE GEOLOGY AND MINING OF THE STERLING HILL ZINC DEPOSIT
OGDENSBURG, SUSSEX COUNTY, NEW JERSEY

Robert W. Metsger
Chief Geologist (Retired)
The New Jersey Zinc Company

The Sterling Hill ore body is one of an unique pair of metamorphosed Proterozoic
zinc oxide and silicate deposits of a type unknown elsewhere in the world. With its
companion deposit in Franklin, three miles to the North, it made up a mineral district
which was a major producer of zinc for over one hundred and fifty years.

The Ore Body

The ore at Sterling Hill is a mixture of franklinite - (Zn,Mn)O.Fe:0s ;

willemite -Zn.SiOs ; and zincite - ZnO. These and the gangue minerals, chiefly
pyroxenes and olivines, occur in various proportions in a matrix of very coarsely
crystalline white marble, the Franklin marble, which has been correlated with the
Grenville marble in Canada and the Adirondacks.

Generally speaking, franklinite comprises from forty to sixty percent of the zinc
bearing minerals. It typically occurs as black, metallic, rounded to octahedral grains a
few millimeters to several centimeters in diameter in intimate association with the other
ore and gangue minerals. The metallic ions, zinc, iron and manganese, are present in the
mineral in various proportions in different parts of the ore body. As a result, the
magnetic properties of the franklinite - and therefore of the ore - vary from strongly
magnetic (approaching that of magnetite) to palpably non-magnetic. Microscopically
fine particles of the magnetic franklinite are black and opaque (indistinguishable from
magnetite) while the non-magnetic particles are ruby red and transparent.

The other principle ore mineral is willemite, comparable in the variety of grain sizes
and concentrations in the ore body with the franklinite. It varies in color from deep red to
pale pink and from jet black to pale gray or colorless. The colors are due to the presence
and relative abundance of micrometer sized inclusions of franklinite which, in various
concentrations, also cause differences in the apparent magnetic properties of the willemite
from place to place in the ore body. These inclusions do not appear to be genetically
related to the macroscopic franklinite occurrences. They are always found associated with
similarly minute inclusions of serpentine distributed much like the magnetite inclusions
commonly found in serpentinized olivine.

Zincite, an orange to red mineral, comprises about six to ten percent of the ore
minerals and is found almost exclusively in the brown willemite parts of the ore body.

In Benimgff, A1, and Puffer, J.H., (editors), The economic geology of northern New Jersey:
Field Guide and Proceedings of the fourteenth annual meeling of the Geological Association of New Jersey, 1997, p 33-46.
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The ore and associated gangue mineral bands occur in complex isoclinal folds which
are wrapped around a core of white marble containing xenolith-like blocks of
amphibolite. The gross synformal structure plunges 45 degrees almost due east
(geographically} while the limbs of the folds strike generally northeastward and dip fifty
five degrees to the southeast. The over-all textures and fold structures suggest very
strongly that the relatively dense ore body sank through the enclosing marble as an
inverted diapir when the carbonate was extremely plastic or almost fluid. Age
determinations on galena found in fractures in the marble indicate that the plastic stage of
the carbonate, hence the imposition of the fold structures, occurred more than eleven
hundred million years ago in pre-Grenville time.

The Zero Fault

Flowing northeastward from Lake Mohawk about seven miles to the Boro of
Franklin, the Wallkill River occupies a valley floored by the Cambro-Ordovician
dolomitic limestones of the Kittatinny supergroup. These are a minimum of 1,150 feet
thick where observed at the Sterling Hill mine and over 1,900 feet thick as determined by
drilling in Franklin. The carbonates are bordered on the southeast and northwest by
parallel, almost vertical faults (Figs. 1 & 2) which separate them from the Proterozoic
rocks on cither side. The northwestern border fault is best known because of its impact
on the mining operations at Sterling Hill and its contribution to the problems of
exploration in the area. It has been investigated extensively in the course of mining and
by diamond drilling to as much as seven thousand feet beneath the surface. Because the
exposure of the fault in the mine coincides with the zero meridian of the mine survey
grid, the fault has been designated as the “Zero Fault” on all modern geologic maps of the
area.

As a result of its fifty-five degree easterly dip, the ore body pinches out gradually
against the nearly vertical Zero Fault below the 1,500 foot level. Below that elevation,
perhaps related to stresses at the time of faulting, a cross-fold which plunges northward
at about 25 degrees further complicates the pattern of ore distribution on each level. The
ore disappears against the fault at a depth of 2,500 foot from the surface. . While we have
no idea how large the severed segment is, it is interesting to note that the dimensions of
the ore body increase from the surface downward to its intersection by the fault (Fig.3)
beyond which it is missing.

As exposed in the mine, the Zero Fault is marked by a vertical, or nearly vertical
zone of intense shearing which ranges up to as much as twenty five feet in thickness. Its
schistose layering is lubricated by heavy black smears of graphite gouge which sharply
delineate it against the light gray to white rocks on either side. The softness of the shear
zone accounts for the lack of natural fault exposures at the surface. Mine openings and
drill hole penetrations below the ore body have encountered numerous ore fragments
within the fault zone (Fig.4) indicating a substantial vertical downward component to the
movement of the block east of the fault. The amount and sense of lateral movement is
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less clear due, in part, to a lack of data south of the mine. As there are no marker units
common to both sides of the fault we can only say that the vertical displacement of the
down-faulted block is a minimum of 1,150 feet (the known thickness of the Kittatinny
dolomites in the graben.)

A good exposure of the Zero Fault occurs about 3 miles northeast of the Sterling
mine. Here the cambro-ordovician sediments are juxtaposed to the Franklin Marble
across a steeply dipping strongly mylontonized zone. Evidence of plastic flow in the
marble on the northwest (left) side of the very sharply defined gouge-filled break can be
seen here. At the same exposure further to the northwest is a graphic granite. How is this
related to the enclosing marble?

Saprolite

Directly over the mine, separated from it to the depth of the 600’level by only 300°
of marble and by less than 100’ of rock at the 1200’ level, is a bedrock depression filled
with water-saturated mud (Fig. 5) with a north-south surface dimension of 2000° and an
east-west dimension of 1000°. The soft, clayey material retains most of the original
textures of the rock from which it was altered and is thus classified as a saprolite. The
flattened cone-like depression bottoms at about the 1200’ level. The great depth of
weathering appears to be related to brecciation associated with the Zero Fault.

A second, smaller occurrence of saprolite (Fig.6) replaced the marble and
amphibolite core of the ore body from the surface to a depth of 675 feet. This was well
explored because it too was hazardous to the mining of the adjacent ore. This saprolite,
which also had the consistency of a clayey mud and retained many of the textural and
structural features of the rock from which it was derived, had an average assay of about
ten percent zinc. Some masses of it assayed as high as forty percent zinc The latter areas
were partially indurated with hemimorphite. The “mud” was mined in the late 1800s and
early 1900s from two open pits until the water table was encountered.

Development

Although there is some evidence of mining activity in the form of scattered pits as
early as 1739, mining in earnest above the 500 foot level did not begin until the latter part
of the nineteenth century. In 1913, making use of old workings to a depth of about 340
feet, an inclined (56 degree) shaft was sunk through large masses of ore for development
down to the 1850 foot level. To protect the shaft, it was necessary to leave a 200 foot
wide pillar. This resulted in tying up a large tonnage of high grade ore.

With the benefit of hindsight it might appear to have been poor planning to locate
the main production shaft where so much ore had to be tied up in supporting pillars.
However, before 1913 very little was known about the amount and geologic continuity
of the ore body below the 500° level. The existence of ore at depth was known only from
three widely spaced borings drilled from the surface in the years 1910-1912 The deepest
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ore penetrated was less than 1200 feet from the surface and there was no way of knowing
how or even whether the occurrences were connected. The decision, therefore, was made
to sink the shaft as close as possible to the projected trend of the known ore. From the
shaft, levels were established at 100’ vertical intervals by driving within the ore to its
extremities, working along the ore bands where they were relatively thin (drifts) and
across the ore (cross-cuts) where it was thickest in the mid-sections of the folds. This
made possible a very accurate estimate of the tonnage and configuration of the deposit
with the added advantage of paying for its exploration with the ore thus produced.

As mining progressed during the 1930’s in the deeper portions of the ore body above
the1850 level it became apparent that, because of the divergence of the trends of the Zero
fault and the northern part of the East limb, a substantial tonnage of ore must exist below
the that level. An exploration shaft was sunk in ore from the 1850 level to the point
where the ore terminated against the fault. Exploration levels at vertical intervals of 100
feet to a depth of 2500 feet, driven in ore, indicated that a sufficient amount was present
below the 1850 level to warrant development. As that extension of the ore body was
separated from the main shaft by 1,200 feet of barren rock, it was necessary to sink a
separate production shaft in its footwall from the 1850 Level and to establish a service
level and sumps in rock at the 2550 depth. The bottom of that shaft is at 2,700 feet below
the surface and is the deepest point in the Sterling Hill Mine.

Although the ore below the 1850 Level was simply a deeper extension of the East
limb that part of the mine became known as the ‘North Ore Body’ because it had its own
shaft and underground hoist. Production from that part of the mine began in 1965

Mining

The East and West limbs and parts of the Cross Member were relatively thin, from
place to place ranging in thickness from as little as two feet to more than twenty five feet.
In those parts of the deposit the ore was extracted by mining upward and for as much as
several hundred feet horizontally along strike from a selected level to the level above
(Fig. 7) . The method, known as shrinkage stoping, required that until all the ore was
broken between levels only enough be withdrawn to make room for the miners to work
at the up-dip limit of the excavation. Not until breaking reached the target level was the
stope emptied. This method required the retention of large tonnages of ore in inventory
for many months. As the broken ore was withdrawn, unpealed logs were emplaced as
stulls to support the overlying marble. When all of the ore in the stope had been removed
between levels, a void remained which was from 3 feet to as much as 20 feet thick, 130
feet in the dip direction and as much as 300 or 400 feet along strike. At various times
over the years divers materials were used to back-fill the voids.. These included
development muck, Franklin Mine tailings, glacial sand and gravel and, for a few years
while it was available, electric furnace slag from the smelter in Palmerton, Pennsylvania.

After 1961 cemented fill was used, first mixed by introducing bagged cement to the
flow from each carload as it was dumped. As one would expect the resulting low-grade
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concrete was anything but uniform in its properties. During the last twenty or so years of
mining all fill was introduced hydraulically from a mixing station just under the surface
through pipes laid throughout the mine to hand held hoses in the individual working
places. This resulted in a much more uniform and controllable grade of concrete.

In the very thick middle part of the ore body a similar shrinkage method was used.
However, here the stopes were transverse to the long dimension of the ore body and
limited to 18 feet in width with 22 foot wide pillars left between them. Excavation
proceeded from foot to hanging wall. On completion, the voids were filled from bridges
constructed at the upper level. When all the stopes in a given area had been mined and
filled, the pillars were removed. In the early days this was done by excavating in slices
from the bottom upward. In the last twenty years or so, mining of the pillars was
accomplished using square sets (Fig.8).
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In 1961, after a three year shut-down for revising the mining plans, a new shaft
entirely within the marble footwall of the ore body was put on line. It had been under
construction since 1949 This made it possible to abandon the old shaft and permlt the
extraction of the huge 200 foot wide shaft pillar.
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Removal of the old shaft pillar had to be approached cautiously as it was located at
the center of the arch formed by the eastward dipping hanging wall of East limb of the
ore body and was beneath the deepest part of the overlying water-saturated saprolite.
Even a very slight shifting of the hanging wall rock would be sufficient to allow large
volumes of water and mud to enter the mine through open cracks. That this was a real
danger was demonstrated clearly when a drill hole only 1.5 inches in diameter broke
through to the mud 150 feet above the 1100 foot level. A slurry of clay and sand gushed
from the hole at a rate of about 420 gallons per minute. The water pressure was 410 psi,
indicating a continuous column to the surface. The pumping capacity for the entire mine
at that time was only 400 gallons per minute. It took almost a week to stop the flow and
seal the hole. In the mean-time the mine openings within about 100 feet of the gushing
drill hole were filled waist deep in mud. Erosion by the slurry had increased the diameter
of the hole appreciably.

Because of the potential danger to the mine from catastrophic flooding, concrete
bulkheads with massive hemispherical doors were constructed on each level to protect the
shaft and the pumping station at its bottom. Those doors at the 1850 foot level had to
withstand water pressures of 800 psi. Pumping capacity was increased to 2,800 gpm
although the normal rate to keep the mine dry was only 68 gpm. The centrifugal pumps
delivered the water from a sump below the 1850 foot level to the surface in one lift.
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At the cessation of operations in 1986 the Sterling Hill Mine had produced about
twelve million tons of ore, about half the amount produced from the Frankiin mine over
its history. In some of the early years the grade as mined had been as low as 12% Zn.
This was a result of more primitive and, to some extent, careless methods of extraction.
However, subsequent to the re-designing of the of the mining procedures in 1961 the
grade produced was consistently between 18.5% and 21% Zinc. This was not due to
“high-grading” but rather was the result of more careful attention to the ore-rock contacts
and the concomitant reduction of over-breaking.

Because of the unique mineral composition of the ore it was never possible to
achieve a beneficiation product at the mine that compared in metal content with the
flotation mill products of sphalerite mines. Whereas the over-all grade of ore in sulfide
mines such as those in middle Tennessee might be as low as 3% zinc metal, the use of
froth flotation methods at the mine makes it possible to separate out a product consisting
of almost pure sphalerite. Hence, such mines are able to ship concentrates containing over
60% zinc metal to the distant smelters. At the smelter the sulfides are roasted to obtain
zinc oxide.

The ore minerals at Ogdensburg were not amenable to froth flotation. Also, whereas
pure sphalerite contains about 67% zinc metal, the combined ore minerals at Sterling Hill,
even if it were possible to obtain a perfect separation from the gangue by the gravity and
magnetic methods available, would contain only about 40 % Zinc metal. Therefore it was
necessary to ship the relatively low grade mill product to the smelter at Palmerton,
Pennsylvania, seventy miles distant, for further concentration of the metal. There it was
combined with large quantities of anthracite from the nearby coal region. The mixture
was charged to a 300 foot long cylindrical rotating kiln (a Waelz kiln) where the zinc was
driven off as a metallic fume and immediately oxidized by a current of air flowing over
the bed. The resulting low grade zinc oxide was collected in a bag house whence it was
drawn for further processing in the manufacture of pure grades of zinc metal and zinc
oxide.

Only after the completion of the roasting of the high grade sphalerite concentrates
and the more expensive waelzing of the relatively low grade Sterling Hill product could
the value of the unique Sterling Hill ore be compared with that of the common sulfide
ores. For this reason, although the concentration of metal in the ground at Sterling Hill
was much higher than in most other zinc districts in the world, its economic value was
not always competitive with that of much lower grade zinc sulfide deposits. The
additional energy required for processing and the necessity for transporting a relatively
low grade mill product negated much of the economic advantage one might have
expected in the mining of such a high grade mineral deposit.
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GENESIS OF THE MARBLE-HOSTED ZINC DEPOSITS AND IRON DEPOSITS AT
STERLING HILL AND FRANKLIN, NJ, AND COMPARISONS WITH GNEISS-
HOSTED IRON DEPOSITS AT CORNWALL, NY

CRAIG A. JOHNSON
Pacific Western Technologies, Ltd.
605 Parfet St. Suite 200
Lakewood, CO 80215

Introduction

The zinc+iron+manganese deposits at Sterling Hill and Franklin, New Jersey and the
magnetite iron deposits of northern New Jersey-southern New York show obvious similarities.
(1) The ores in both deposit types are massive. Sterling Hill and Franklin ores locally reach
some 70 wt% zinc+iron+manganese, and at many of the iron deposits grades can locally exceed
70 wt% iron. (2) The ores in both deposit types are predominantly oxide minerals rather than
sulfide minerals. (3) The geometry of the deposits can generally be interpreted to have resulted
from isoclinal folding of bodies that were originally tabular or stratiform (Skinner and Johnson,
1987), although it is difficult to rule out on structural arguments alone the possibility that the
deposits are replacements of already-folded strata.

Despite their similarities, the zinc+iron+manganese deposits and the iron deposits have
not traditionally been considered together in formulating genetic hypotheses. The reasons for
this are two-fold. First, there is a large chemical and mineralogical gap between the two deposit
types. There are no known zincian or manganoan iron deposits that lie between the
zinc+Hron+tmanganese deposits on the one hand and the zinc- and manganese-free iron deposits
on the other hand. Second, many of the investigations at the zinc deposits have been motivated
by an interest in the diversity and quality of mineral specimens found therein. Because the
mineralogy of the iron deposits is less interesting, these deposits have received less study
generally by different investigators than those that have studied the zinc deposits.

The purpose of this paper is to present a review of selected evidence bearing on the
genesis of the marble-hosted zinc+iron+manganese and iron deposits. Comparisons will also be
made with gneiss-hosted iron deposits at Cornwall, NY. The Cornwall deposits are
representative of many of the gneiss-hosted iron deposits in northern New Jersey and southern
New York, but there is sufficient diversity among the iron deposits that the Cornwall occurrences
should not be taken as representative of all of them.

For any given deposit, it is possible if not likely that the ores were affected by the Grenville
metamorphism and deformation at about 1.0 Ga. As a result, the mineral assemblages that are
observed today may well be metamorphic and not be the original assemblages that formed at the
time of metal emplacement. This has been shown to be the case at Sterling Hill (Johnson et al.,
1990a). The strategy in this review is to focus on features of the deposits which are likely to
have been inherited from the protoliths, in particular features which reflect physicochemical
parameters such as the oxidation and sulfidation states, or features which reflect the sources of
chemical constituents such as the isotopic compositions of carbon, sulfur, and oxygen. At

In Benimaoff, AL, and Pyffer, J.H., (editors), The economic geology of northern New Jersey: Field Guide and Proceedings of the fourteenth
annual meeting of the Geological Association of New Jersey, 1997, p 47-59
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Sterling Hill, it has been shown that some of the ores have gained or lost chemical components
during the Grenville metamorphism, mainly along metamorphic veins and fractures that
penetrate the deposit (Johnson et al., 1990a, Makovicky and Skinner, 1990). There are sections
of the ore zones, however, which show no evidence of metamorphic veins and for which
chemical and isotopic data are consistent with the hypothesis that they behaved largely as closed
systems on the hand specimen scale during the metamorphic event (Johnson et al., 1990a).
These ores are the most reliable indicators of the chemical and isotopic properties of the
protoliths and it is observations of these unveined ores that are discussed below.

The Marble-Hosted Zinc Deposits and Marble-Hosted Furnace Magnetite Bed

The Sterling Hill and Franklin zinc+ron+manganese deposits and the Furnace magnetite
bed are located within the Franklin Marble, a member of the paragneiss sequence within the
Proterozoic Reading Prong. The Sterling Hill deposit comprises a sequence of continuous strata
with the form of a north-plunging synform. The ore layers are at the base of the sequence, and
they are composed of willemite+franklinite+calcitetzincite. Calc-silicate+calcite strata overlie
the ore layers. The Franklin deposit is mineralogically and lithologically similar to Sterling Hill
except that there are numerous pegmatites that have crosscut the ore and calc-silicate units
creating skarn assemblages at their margins. The Furnace magnetite bed immediately underlies
and is similar in form to the Franklin zinc deposit. The Furnace bed is wholly within the
Franklin Marble and contains calcite as the major gangue mineral. The proximity of the iron and
zinc-Hron+manganese ores has long been thought to be evidence of similar origins (Frondel and
Baum, 1974); the results of recent work supports this hypothesis (Johnson et al., 1990b). For
thorough descriptions of these deposits and their surrounding rocks, the reader is referred to
Metsger et al. (1958, 1969), Metsger (1962), and Frondel and Baum (1974).

There are three lines of evidence indicating that the original emplacement of the
zincHron+manganese at Sterling Hill and, by analogy, at Franklin took place prior to the main
Grenville deformation and metamorphism at 1.0 Ga. The first line of evidence is structural and
consists of the fact that the orebody is composed of continuous strata that show the same mineral
lineations and isoclinal folding as the enclosing host rocks (Metsger, 1962; Metsger et al., 1969).
Individual strata can be quite thin and laterally continuous. One distinctive fluorite-bearing layer
within the ore body has been traced some 600 meters down the plunge of the synform (Metsger,
unpubl. data). The second line of evidence is petrologic and consists of the fact that minerals in
the deposits have been shown to have formed at high temperatures indistinguishable from the
regional Grenville metamorphic temperatures (Mason, 1947; Carvalho and Sclar, 1988). The
third line of evidence is geochronologic and consists of the fact that potassium-argon age dates of
Sterling Hill zincian biotites are indistingnishable from the Grenville dates that have been
obtained from non-mineralized gneisses both in close proximity to the zinc deposit and
elsewhere in the region (Johnson et al., 1990a).

For ores that behaved as rock-dominated systems during the Grenville metamorphism
(see discussion in Johnson et al., 1990a), the present-day oxidation and sulfidation states reflect
those of the protoliths. The stabilities of relevant minerals and assemblages as functions of
oxygen fugacity (fO,) and sulfur fugacity (fS$;) are shown in Figure 1. The absolute values of
f0Oq and f$; are not directly applicable to the protolith, but it is clear that the
willemite+franklinite: zincite-bearing rocks reflect higher oxidation states and/or lower
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sulfidation states than the pyrrhotite- or pyrite-bearing Franklin Marble wall rocks. The Franklin
Marble is a metamorphosed marine limestone, so the environment in which the protoliths for the
ores were formed was one of a higher oxidation state and/or lower sulfidation state than typical
marine limestone.

The Furnace magnetite bed contains minor amounts of pyrite in addition to magnetite. The
assemblage magnetite+pyrite is stable over relatively small ranges of f0; and fS; (Fig. 1). The
values of fS; are substantially higher than those required to stabilize willemite+franklinite or
zincite, so the Furnace bed reflects metal deposition in a more suifidizing environment than that
in which the zinc ores were formed. The relative oxidation states of the two types of ore are not
constrained by the mineral equilibria shown in Figure 1.
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Figure 1. The stability of ore minerals and assemblages as functions of f0, and f$; at the
inferred Grenville metamorphic conditions of 5 kbar and 1000K. Modified from Johnson et al.

(1990a).
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The fugacities of the halogens fluorine and chlorine are also of interest because they too
may serve as a basis for comparing the different deposit types. The common ores at Sterling Hill
and Franklin contain neither fluorine- nor chlorine-bearing minerals, so the fugacities of these
species cannot be evaluated. The Furnace magnetite bed, however, contains fluorite. Also,
tremolitic amphibole with 3 wt% F and less than 0.1 wt% Cl (Fig. 2) has been found coexisting
with massive magnetite in drill core from near the keel of the Franklin zinc deposit west of the
Parker Shaft. There is some question whether this drill core intersection is actually the Furnace
bed and not a separate magnetite layer within the zinc deposit. In either case, because the rock is
composed of massive, zinc-frec magnetite with minor calcite it is as representative of marble-
hosted iron deposits as the Furnace bed. The assemblages in the magnetite layer(s) do not place
useful constraints on fHF and fHCI, but the amphibole analyses imply a relatively high fug/ fuci
ratio and provide a basis for comparison with the gneiss-hosted iron deposits at Cornwall (see
below).

Another feature expected to have been minimally changed during the Grenville
metamorphism is the isotopic composition of sulfur contained in the rocks. Sulfide minerals are
not common constituents of the zinc+irontmanganese ores, but there are occurrences within the
Sterling Hill deposit that appear from textural evidence to have been part of the metamorphic
assemblage and therefore to represent sulfur that was contained in the protolith (Johnson et al.,
1990a). The isotopic compositions of representative samples (Ault, 1957) are shown in Figure 3.
The existence of 534St values as low as -10%o and the broad range of values spanning some
23%o are strong evidence that the origin of the sulfur in the protolith was H>S generated by
bacterially-mediated reduction of sulfate. There are no sulfur isotopic data from the Furnace bed
with which to compare the Sterling Hill data.

A third feature of interest at the deposits is the isotopic composition of carbon and
oxygen contained in calcite, the major gangue mineral in both the zinc ores and the Furnace bed.
The carbon isotopic compositions are shown in Figure 4. Sterling Hill ore and calc-silicate
calcites lie at 0.8+1%o, a value typical of the Franklin Marble host rock and of marine limestones
of late Proterozoic age worldwide. The Furnace bed calcites are systematically lower in §!3C
with a mean value of -7%o. Similarly low values have been observed in carbonate-hosted iron
formations of both Algoma- and Superior-types (eg., Becker and Clayton, 1972). The consensus
is that the values reflect isotopically light organic-derived carbon, and that carbonate deposition
took place in a basin that had restricted communication with the open ocean.

The oxygen isotopic compositions of Sterling Hill and Furnace bed calcite are shown in
Figure 5. Both ore types are in the range 11 to 16%e. Of particular interest are the compositions
of pure calcite layers that are interbedded with the zinc+irontmanganese-bearing strata. The
compositions of these layers at both Sterling Hill and Franklin fall at 15%., substantially below
the 20-25%o range characteristic of Franklin Marble far from the deposits and of late Proterozoic
marine limestones worldwide. If these layers have retained their premetamorphic 3180 values
(see discussion in Johnson et al., 1990a), then they constrain the temperature of their formation
and the §180 value of the water from which they were deposited. The solution is not unique, but
an oxygen isotopic and chemical mass balance model applied to the Sterling Hill ore layers fixes
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the temperature of zinc+iron+manganese deposition at 150+50°C and the §180 value of H>O in
the metal-depositing fluid at a value several permil larger than the value of zero characteristic of
pristine seawater. Details and assumptions of the model are given by Johnson et al. (1990a).
The same modelling method has yet to be applied to the Furnace bed.
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The Gneiss-Hosted Magnetite Deposits at Cornwall, NY

The Cornwall magnetite deposits are located just west of the Hudson River some 10
kilometers south of the city of Newburgh. The deposits are exposed in outcrop and in prospect
pits; they are too small to have been of economic interest at the time that other similar deposits in
the area were mined. The host rocks for the deposits are strongly banded
plagioclasetbiotitexclinopyroxenethornblende+quartz gneisses and kspar+quartz+hornblende
granite gneisses. At one locality, well-banded magnetite gneiss occurs at the contact between
biotite+plagioclase+hornblende gneiss and a large body of granite. At other localities, the
magnetite-rich rocks are pegmatoidal. The pegmatoidal occurrences appear to be less-deformed
than the banded occurrences and are surrounded by outcrops of granite. Geologic maps of the
occurrences, the results of a ground magnetic survey, and petrographic descriptions of
representative rocks are contained in a Hunter College independent study project report that was
authored by Askold Chemych and Cheryl Eisenberg in 1991.

At Cornwall, as at many of the magnetite deposits of northern New Jersey and southern
New York, it is difficult to determine whether the original emplacement of the iron predated or
postdated the Grenville metamorphism. The ground magnetics data show clear evidence of the
same isoclinal folds with NNE-trending axial traces that are observed in the outcropping banded
gneisses. However, this observation could be interpreted as reflecting either deformation of a
preexisting iron formation or metasomatic replacement of an already-deformed horizon or layer.
Less-deformed magnetite-bearing pegmatites have been cited elsewhere as evidence of post-
folding iron emplacement (Foose and McLelland, 1995), but they cannot be taken as definitive
proof because the possibility exists that the pegmatites are partial melts of preexisting iron
formations that were formed within the thermal aureoles of the late tectonic granites (Johnson,
1996).

Leaving aside the relative timing question, it is instructive to look at some of the same
features that have been described above for the marble-hosted deposits. The oxidation and
sulfidation states of the Cornwall magnetite-rich rocks are shown along with the marble-hosted
ores in Figure 1. Pyrrhotite is a minor but common mineral in the banded rocks, and its presence
indicates more sulfidizing conditions and/or less oxidizing conditions than for the
zinc+iron+manganese ores at Sterling Hill and Franklin. The Cornwall deposits, however, lie at
lower fO, and lower fS; than the Furnace magnetite bed (Fig. 1), so the range of conditions at
the marble-hosted deposits encompassed those at the gneiss-hosted deposits.

The fluorine- and chlorine-contents of pargasitic amphiboles from the Cornwall rocks
have been determined by Leger et al. (1996). Figure 2 illustrates that whereas fluorine contents
are low, chlorine contents are quite high. In fact, the coexisting biotite in a sample studied by
Leger et al. (1996) has one of the highest chlorine contents ever reported for the mineral. The
difference in fluorine contents of the Furnace bed and Cornwall amphiboles can be partly
attributed to crystal chemical effects (cf., Morrison, 1991), but the differences are larger than can
be accounted for by crystal chemistry alone. The data imply lower fuF/fHCI during iron
emplacement at Cornwall than at the Furnace bed.

The isotopic composition of sulfur in typical Cornwall samples is shown in Figure 2. The
data are few, but they suggest uniform compositions at about 5%e. The compositions are more
suggestive of a magmatic origin for the sulfur than for an origin by in situ bacteriogenic
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reduction of sulfate (Ohmoto, 1986). However, a definitive conclusion for the origin of the
sulfur will require a more thorough study.

CONCLUSIONS

For the marble-hosted zinc ores, there are several lines of evidence suggesting that metal
deposition took place in a marine sedimentary environment. The sulfur isotope data suggest in
situ bacterial reduction of sulfate in a diagenetic environment, and the carbon isotope data
suggest precipitation from bicarbonate in marine waters. The high oxidation state - low
sulfidation state character of the ores is consistent with the hypothesis that seawater controlled
these two parameters during ore formation. A modern analog of the protoliths for the Sterling
Hill and Franklin ores, first proposed by Callahan (1966), may be the sulfide-poor strata that are
forming today beneath ponded brine pools at the bottom of the Red Sea (eg., Pautot et ai., 1984).
Iron formations have also been recognized in the Red Sea, and these may be analogs for the
Furnace magnetite bed. The change from zinc+Hron+manganese deposition to iron deposition in
the New Jersey occurrences involved a shift toward more reducing conditions, presumably
anoxia, and a change in hydrologic conditions so that the overlying basin waters became
restricted in their communication with the open oceans.

The gneiss-hosted iron deposits at Cornwall show neither the high oxidation state - low
sulfidation state nor sulfur isotopic evidence for a sedimentary environment. The ratio fHF/fHCI
is also lower than at the marble-hosted deposits. Despite the fact that the 534S values of 5%e and
the apparent high fHc1 could both be construed as evidence for a magmatic component in the ore-
forming system, it would be premature to conclude that there is no genetic link between the
marble-hosted and gneiss-hosted deposits. There remain fundamental unanswered questions for
both deposit types. The recognition of a seafloor depositional environment for the marble-hosted
deposits sheds little light on the source of the hydrothermal fluid, the source of the metals, and
the source of the heat that drove hydrothermal circulation. All three could have been supplied by
magmas at shallow levels beneath the Proterozoic seafloor. On the other hand, the lack of
obvious evidence for a sedimentary depositional environment at Cornwall may simply reflect an
environment of hydrothermal discharge different from that at Sterling Hill and Franklin.

Whether the two deposit types shared similar sources for hydrothermal fluids, metals, and heat
remains an unanswered and important question.
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A SKETCH OF THE LIME CREST QUARRY, THE FRANKLIN MARBLE
AND SOME INTERESTING MINERALS

Warren Cummings
1191 Parkside Ave
Ewing, NJ 08618

The Lime Crest quarry is located at the northwestern edge of the New Jersey Highlands
in Sparta Township, Sussex County, NJ, near the center of the Newton East quadrangle, GQ-
1707 (Drake and Volkert, 1993). The quarry has been a significant component in the economy
of the County and several surrounding municipalities for most of this century. Limestone
Products Corp. of America was founded by a group of local businessmen shortly after the First
World War and operated the quarry until the mid 1970’s. During the past 25 years the operation
has had a series of outside Corporate owners. The latest ownership change occurred in early
1997 when Medusa Minerals acquired the property.

The Lime Crest quarry is centered on a small area underlain by a thick, massive
Precambrian marble that has customarily been correlated with the Franklin Marble. The Franklin
Marble is the only mineable calcite-rich carbonate unit in the region between the mid-Hudson
valley of New York and the Lebanon - Lancaster area in Pennsylvania. Until the tide of
suburbanization began flowing in earnest in the 1960°s Sussex County and adjacent Warren and
Orange Counties had large agricultural industries, primarily dairy. The quarry was located in the
heart of this agricultural area and was the principal supplier of pulverized limestone, hydrated
lime, poultry grits and other products to this large market.

Over the past 40 years there have been major changes in the market for limestone
products. Hydrated lime production ceased in the mid-1970’s in the wake of the Arab oil
embargo and subsequent escalation in fuel cost. Pulverized limestone now goes largely to the
lawns of suburbia rather than corn fields. A plant to pelletize pulverized limestone was recently
put on line. Pelletization is an attempt of make the application of pulverized limestone to lawns
more effective by reducing wind loss and redistribution by rain. The bulk of production goes
into crushed stone of various sizes and is consumed by the construction industry. Because of its
white color and its coarsely crystalline nature the marble is widely used in a variety of
architectural and landscaping applications. It is also processed into a white sand for use in white
portland cement concrete most commeonly seen in curbs and highway center barrier.

General Geology

The Lime Crest quarry was originally begun in a body of Franklin Marble that
outcropped on a hillside overlooking a marsh. The upper slopes of the hill were underlain by
gneiss and the marsh by Cambrian age dolomite. Maps by Drake and Volkert (1993) and
Herman and Monteverde (1989) show a thrust fault passing just west of the quarry site beneath
the marsh and glacial deposits. Cross sections accompanying both maps indicate that the thrust
dips at a moderate angle beneath the quarry. The Precambrian rocks and a thin veneer of early

In Benimoff, A.I, and Puffer, J.H., (editors), The economic geology of northern New Jersey:
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Cambrian Hardyston and Leithsville Formations have been thrust over the Leithsville and onto
the late Cambrian Allentown Formation.

As mapped by Hague, ef al. (1956) and Drake and Volkert (1993) the marble outcrop area
is lens shaped in plan, approximately 6000 ft. x 1300 ft. Part of the marshy area along the
northwest side of the marble outcrop was filled and leveled to create a plant site and stockpile
yard. The filled area also serves as a barrier between the quarry and the surface water drainage
that occupies the adjacent valley. After construction of the plant and yard the mineable outcrop
width of the marble was approximately 750 ft. Constrained by noncarbonate rocks to the
southeast and abundant surface water to the north, the quarry took on the form of an elongated
pit.

At present the quarry is approximately 3000 ft. x 1200 ft. x 300 ft., the long dimension
oriented nearly parallel with strike. For most of its history the Lime Crest quarry produced only
crushed marble products. However, since the early 1970's, expansion of the pit toward the
southeast has required the removal of increasing amounts of gneiss. The gneiss is quatried
separately and processed through a separate plant.

The increasing depth of the marble producing part of the main pit has increased both
haulage and water pumping costs. Within the past 15 years, since the reconstruction of County
Road 669, some work has been done to expand the pit northeastward into unlined areas.
However, progress toward this expansion has been slow and most of the mining effort continues
to be focused downward. During the spring of 1997 the new owner, Medusa Minerals, diamond
drilled at least three holes to 150 feet beneath the lowest level of the quarry. Observation of the
core showed that the marble thickness beneath the quarry exceeds that tested by the drill.

The northwestern-most quarry excavation, just north of the access road to the upper
benches, has exposed a fault contact between the Franklin Marble and the black dolomite of the
Leithsville Formation. At this locality the contact is defined by a northwest dipping zone of
brecciation at least 20 feet wide. The breccia zone there is extensive vein filling and replacement
of the Franklin Marble by secondary dolomite and minor quartz. The similarities between the
secondary dolomite and the Buckwheat dolomite (Peters, et al., 1983; Cummings, 1988), in
Franklin, are unmistakable. No evidence of the Hardyston quartzite has been seen.

Toward the southeast the marble is overlain by a metasedimentary sequence very similar
to that present in the Franklin-Sterling Hill area. Immediately overlying the marble is a thick
sequence of microcline gneiss and amphibolite. The second prominent marble band in the
region, the Wildcat Marble, outcrops approximately 2600 feet east of the mining area.

The Franklin Marble

The marble exposed at the Lime Crest quarry is typical of that seen in the main outcrop
belt of the Franklin Marble less than 2 miles to the northeast. The marble at Lime Crest is white
to light gray, medium to very coarsely crystalline calcite with subordinate dolomite. The
analysis of 10 bulk samples of various crushed products done over a period of several years
indicates dolomite contents ranging from a few to over 90%. The insoluble component generally
ranges between 0.5 and 8%. Higher insoluble residues indicate the incorporation of pegmatite or
other silicate rock into the plant feed. The Franklin Marble is the most intensely studied of all
the Precambrian units in the Highlands. The descriptions given by Hague, er al. (1956), Offield
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(1967) and Kearns (1977) of the Franklin Marble in its main outcrop belt apply to the marble at
the Lime Crest quarry.

The marble contains a variety of noncarbonate minerals. The most abundant are graphite,
chondrodite/norbergite, phlogophite, tremolite, pyrrhotite, scapolite and spinel. Pyroxene is
conspicuously absent except in the skarn surrounding pegmatite. Most of the silicate minerals
and spinel occur in discontinuous bands that are conformable with both the thin, but continuous,
bands of gneiss within the marble and the contact with the overlying gneiss. Long before a
quarry was established mineral specimens were collected from the marble outcrops. In 1844 the
5" edition of Phillips’s Mineralogy listed “Newton” as a locality for corundum, rutile, spinel,
sphene and tourmaline. At the time Newton covered a much larger geographical area and
although it did not include the quarry site its boundaries came within a few hundred yards. It
was also the nearest established settlement. The minerals listed in the 1840’s are those that occur
most frequently as well formed crystals. As such they are the species that have been most avidly
sought by collectors up to the present day.

Pegmatite and gneiss arc common in the marble at Lime Crest although they generally
account for a relatively minor part of the material mined. Pegmatite usually occurs in lenses up
to a few feet thick and a few 10's of feet in maximum dimension. However, at least one large
pegmatite in the southwest section of the quarry has been intersected by mining repeatedly for at
least 25 years. Pegmatite bodies are rimmed by a pyroxene-rich skarn. The skarn usually forms
a thin, irregular band around the outer margins of the pegmatite pods. However, as noted by
Kearns (1977) in the Amity, NY area, the reaction rim can be so thick as to consume most of the
pegmatite. These skarns may contain numerous evhedral, reddish brown sphene crystals that
occasionally exceed 1 inch. In some areas of the Franklin marble the skarns associated with
pegmatite and other siliceous gneisses contain large euhedral crystals of diopside and scapolite
but such crystals are very rare at Lime Crest.

The Lime Crest quarry contains a thin but prominent layer of hornblende gneiss. This
layer is exposed as a series of pods, apparently conformable, that almost certainly are boudins of
a formerly continuous bed. In hand specimen the hornblende gneiss is fine grained, massive and
is not discernibly layered. In most places the contact between the hornblende gneiss and the
marble is sharp and devoid of a reaction skarn assemblage like those that surround more siliceous
lithologies. Locally, the contact is marked by pods of margarite [ CaAl2(Al2Si2)010(OH)2],
and ferroan dolomite. Margarite, a brittle mica, is normally found in very aluminous
environments. It is most often encountered as an alteration product of corumdum. In the
Franklin Marble margarite is uncommeon but has been found locally in assemblages where
corundum is either absent, as in the occurrence in the hormblende gneiss, or is a distinctly
separate phase. Dunn and Frondel (1991) interpreted an extensive margarite-bearing horizon in
the Sterling Hill area as representing a highly aluminous bed within the marble.

The similarities between the Franklin Marble of the main outcrop belt and the marble at
Lime Crest extend to a more detailed level. As in the main outcrop belt of Franklin Marble
discontinuous bands and pods of silica deficient silicate minerals are very abundant. In many of
these bands chondrodite/norbergite, as yellowish or orange-brown grains thickly dispersed in
marble, is the only significant non-carbonate mineral. In many other cases
chondrodite/norbergite is accompanied by phlogopite, spinel and, far less commonly, amphibole.

Chondrodite | Mgs(Si04)2(F,0H)2 }/norbergite [ Mg3(Si04)(F,O0H)2 Jare two separate
species in the humite group. Each has been found as a distinct entity in the Franklin marble but
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most often they occur as composite crystals of norbergite over a chondrodite core. They are
indistinguishable in hand specimen and so are treated here as one. As abundant as
chondrodite/norbergite is at Limecrest and throughout the Franklin marble euhedral crystals are
extremely rare. Between 1994 and 1996 a considerable number of well formed crystals up to
1.5” were recovered from a group of boulders. The crystals apparently were limited to one local
band of very whilte, relatively fine grained marble adjacent to a chondrodite/norbergite band of
normal texture. The very white marble contained numerous euhedral chondrodite/norbergite
crystals, a few discrete flakes of graphite and a few crystals of spinel.

The abundance of chondrodite/norbergite reflects the pervasive presence of significant
amounts fluorine throughout the Franklin Marble. Jones, ef al. (1969) indicated that high
fluorine content, relative to hydroxl, was characteristic of chondrodite and norbergite and
necessary to stabilize them relative to forsterite. Forsterite occurs in the Franklin Marble but is
quite uncommon. Kearns, ef al. (1980) has shown that relatively high fluorine contents are also
characteristic of other hydrous silicates that are abundant in the Franklin Marble. They suggest
that fluorine has stabilized some of these minerals and allowed them to persist at severe
metamorphic conditions estimated at 836°C+/-40°C and 5 to 7 Kbar.

Many of the silicate assemblages are aluminous and contain phlogopite, spinel and, less
commonly, corundum. Spinel is locally abundant at Lime Crest where it generally occurs as
granular masses and small octahedral crystals. The most common color is dark grayish purple
but reddish crystals also occur. Lime Crest is not one of the premier spinel localities in the
Franklin Marble. Spinel crystals larger than 1/4” are uncommon and those exceeding 1/2” are
rare. The largest individuals found in recent years have been approximately 1” on an edge.
Kearns (1977), working around Amity, NY in the most prolific spinel area in the Franklin
Marble, noted that phlogophite was a universal associate of spinel. He proposed that the reaction
of dolomite and muscovite produced phlogophite, calcite and the alumina that resulted in spinel.
Although phlogophite is a common associate of spinel at Lime Crest there are many examples
where it does not appear to be sufficiently abundant to account for the spinel present.

Corundum 1s one of the minerals most sought after by collectors at the Lime Crest quarry
and has been found many times. It typically occurs in calcite pods within lenses composed
predominantly of phlogopite. The corundum is typically gray with sapphire blue spots and
zones. It is almost always associated with small, black, prismatic crystals of rutile. The sapphire
blue color is usually intense, but volumes within crystals large enough to produce cut stones are
rare. Very rarely, corundum occurs as the ruby variety. In the one example seen by the author
the ruby corundum crystallized with red spinel in a small calcite lens in massive, light green
amphibole. Unlike the typical corundum-bearing assemblage phlogophite was a very minor
component.

Unfortunately, the distribution of corundum occurrences has not been mapped. In the
author’s experience, covering the past 27 years, most of the corundum discoveries appear to have
come from a single conformable horizon extending the length of the quarry, a few tens of feet
beneath and conformable with the hornblende gneiss layer. The distribution of lenses of
corundum-bearing rock suggest that, like the segmented hornblende gneiss, they may be boudins
of a once continuous layer. At present the zone that has produced corundum is not well exposed
in active bench faces. Most of its outcrop length is currently in the quarry floor or in debris
covered, inactive areas.

64



in active bench faces. Most of its outcrop length is currently in the quarry floor or in debris
covered, inactive areas.

Another characteristic of the Franklin marble are small but widespread concentrations of
boron. Because of its distribution and unique set of properties, boron may provide important
information concerning the depositional environment of the Franklin Marble (Moore and
Swihart, 1990). Tourmaline, mostly uvite [ CaMg3AlsMg(OH)4(B03)3(SigQ18) ], is
distributed throughout the marble as individual crystals and local groups of crystals. Tourmaline
is sometimes associated with other silicate minerals, especially scapolite. Frequently, however,
tourmaline crystals are found isolated in marble with no significant amount of other silicate
minerals nearby. What is frequently seen near these isolated tourmalines are very sparsely
scattered arsenopyrite crystals. In spite of being widespread tourmaline is only rarely part of an
assemblage distributed more extensively in bands or boudins.

The rare mineral fluoborite | Mg3(BO3)(F,OH)3 | was first recognized in the 1970's
(Kearns, 1975, 1977) as a primary mineral in the marble at 2 localities: Amity, NY and
Rudeville, NJ. The Franklin Marble immediately became the World’s premier fluoborite
~locality. Fluoborite is very difficult to recognize in the field because it forms white, vitreous
grains that blend with calcite on fresh surfaces and are non-descript on weathered ones. Largely
because it is fluorescent moderately bright cream in ultraviolet light, fluoborite has since been
recognized at several localities, including Lime Crest. It may be widespread in small amounts
throughout the Franklin Marble. At Lime Crest, and at all but one of the other localities where it
has been recognized, fluoborite is the overwhelmingly dominant boron species. Unlike uvite,
fluoborite is typically found in bands, up to more than three feet thick, where small, thickly
scattered grains make up as much as 60% of the rock (Moore and Swihart, 1990). Fluoborite-
rich bands may either be isolated or adjacent to and slightly overlap a band of
chondrodite/norbergite grains. Other boron minerals have been found with fluoborite. At the
Rudeville locality there were minor amounts of kotoite [ Mg3(B03)2 ], sinhalite [ MgAIBO4 ],
and warwickite [ (Mg,Fe)3TiB20g ]. At Amity fluoborite was subordinate to warwickite. To
date only fluoborite has been identified at Lime Crest but its mode of occurrence was similar to
that seen elsewhere (Steve Misiur, personal communication).

The contact between the Franklin Marble and the overlying microcline gneiss is abrupt in
the sense that the initially encountered contact is sharp and there is no extensive transition
through calcsilicate gneiss. In a particularly accessible outcrop that existed during 1994-5 least 3
thin, sharply bounded, conformable bands of coarsely crystalline carbonate occurred above the
contact within the lower 20 feet of the gneiss. At the initial contact the top one inch of marble
contained small, scattered pyroxene grains. Immediately above the marble, and separated from it
by a band of pyroxene less than half an inch thick, was a band of granitic rock one to two inches
thick. The granitic material was overlain abruptly by more finely crystalline, very well layered,
biotite-bearing , microcline gneiss.

The microcline gneiss is generally well layered. Much of the exposed portion of this unit
is rich in biotite and layers containing large anhedral to subhedral, maroon crystals of garnet are
common. QOccasionally, with some imagination, one can make out very crude faces on the garnet
crystals.

Microcline gneiss now makes up approximately half of the outcrop area on the pit's
southeast side. Because of the moderate southeast dip the gneiss will continue to be exposed on
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progressively lower benches as the quarry expands in that direction . Tree cutting, stripping and
other preliminary development tasks are currently underway along the crest of the ridge
preparing the area for mining.

The gneiss is quarried separately and processed through a separate plant located near the
northeast corner of the pit and known as the “granite plant.” The “granite plant” is modest in
size, approximately 300 tons/hour capacity, but typical of crushed stone producing plants in its
operation. It crushes the muck blasted from the upper quarry benches and screens the material
into several types of construction aggregate, each having a standard grading. Adjustments in the
size and quantity of specific products can be altered by changing screen sizes, crusher settings
and recycling circuits. The name given this subsidiary operation is instructive since it
emphasizes the strong tendency in the construction industry to call almost all crystalline rocks
“granite” or “granite gneiss” regardless of their composition or origin.

Epigenetic Mineral Assemblages

Both the Precambrian rocks of the Highlands and those of the adjacent Great Valley
experienced hydrothermal activity during the Paleozoic. In the Precambrian rocks the effects of
hydrothermal alteration are limited to fractures and their immediate vicinity. The best examples
of secondary hydrothermal mineral development occur along the northwest margin of the
Highlands near the contact between the Precambrian and Paleozoic rocks. In most cases
deformation within fracture zones created no open space. Alteration is limited to the
recrystallization of fault gouge to fine grained chlorite and epidote (Hull ef al., 1986). Locally,
significant open space does occur in fractures, enough to allow the development of more
extensive, interesting and better crystallized mineral assemblages.

The hydrothermal assemblages that occupy open spaces within fractured Precambrian
rocks along the northwest margin of the Highlands are of two types: Mississippi Valley-Type
(MVT) lead-zinc and Alpine cleft. The mineral assemblages and depositional processes
characteristic of each type of mineral deposition are quite different, yet in the region that includes
the Lime Crest quarry both types occur in close proximity and in some cases are superimposed
on one another.

The mineralogy of MVT deposits is simple: some combination of the common
carbonates and sulphides, plus barite and fluorite. Copper is never more than a minor component
and is often absent. MVT ore deposits appear to result from the migration of deep sedimentary
basin brines to favorable, shallow structures near basin margins. The brines are thought to leach
metals from the sediments through which they pass during migration. MVT mineral deposits
range from very small curiosities to orebodies containing tens of millions of tons. The chemistry
of the deposition site is fluid dominated and the epigenetic mineral assemblage is dominated by
introduced components. Because of their economic importance there is a voluminous literature
concerning MVT mineral depositing systems. If interested start with Anderson (1991),
Anderson and Macqueen (1982), Bethke (1986), Plumlee, ef al. (1994), and Sverjensky (1984).
Although they are among the most intensely studied and best known hydrothermal systems many
paradoxes still exist (Spirakis and Heyl, 1996).

Alpine cleft deposits, best known from the central massif in Switzerland, are of interest
principally to mineral collectors. Clefts have produced superbly crystallized examples of both
common, rock-forming minerals and rarer species. The lack of industrial-scale economic
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incentive means that the literature concerning most facets of this type of mineral occurrence is far
less focused than that of MVT deposits. A good introductory summary is given by Weible
(1966). Briefly, clefts are open spaces that can be of any size. The flux of circulating
groundwater is very sluggish, compared with MVT systems, and the fluid chemistry within the
cleft is rock dominated. The minerals that crystallize on the walls of the cleft derive all or most
of their components from the adjacent countryrock and reflect its composition.

The Highlands probably host many minor Alpine cleft type mineral occurrences, Most
contain only small, unexceptional crystals quartz, feldspar, epidote, amphibole and pyrite.
However, some clefts in the Highlands, particularly those found in calcsilicate gneisses along its
northwestern edge, have contained more interesting species. Several examples have been found,
scattered between Bethlehem, PA to Fishkill, NY, that contain ferroaxinite (Cummings, 1983).
In 1995 ferroaxinite was found at Lime Crest in very narrow fractures cutting a pegmatite. Most
of the best documented and most diverse cleft assemblages have been found in gneisses closely
associated with the Franklin and Sterling Hill zinc deposits and the nearby iron mines.
Betancourt (1989) described one such example. Another assemblage, rich in sulphides of
copper and other metals but with many similarities to Alpine clefts, was recently described from
within the Sterling Hill ore body (Jenkins and Misiur, 1994). The metal sulphide-rich nature of
this paragenesis, unusual in Alpine cleft environments, may simply reflect the unusual chemistry
of the countryrock. The number of cleft localities known in the Franklin-Sterling Hill arca
probably reflects the intensity of mining and attendant study and collecting.

In the Franklin Marble examples are known in which a later MVT paragenesis is
superimposed on an Alpine cleft assemblage. The best known is the Buckwheat dolomite in the
Franklin mine (Cummings, 1988). Similarly superimposed assemblages were recognized at the
Lime Crest quarry in 1985 and are discussed below. The Buckwheat dolomite was described by
Palache (1935) as a vein-like body. It is a secondary dolomite with numerous small vugs
containing an extensive suite of minerals including albite, chlorite, microcline, muscovite and
rutile (Peters, ef al., 1983). Abundant coarsely crystalline calcite and sphalerite were the last
minerals to deposit. They fill small fractures and the remaining open spaces in dolomite cavities
and, although widespread, are not ubiquitous. '

MVT mineral assemblages are widespread in the Franklin Marble including the Lime
Crest area. Hague et al. (1956) note the occurrence of sphalerite and galena at the Indian Mine,
just east of the Lime Crest quarry. The quarry has since expanded past this locality and exposed
a fracture zone approximately 20 feet below, and conformable with, the gneiss/marble contact.
In exposures that have evolved during the past five years this fracture zone is flanked by an
extensive bleached halo and contained one of the best example of MVT mineral deposition that
has been recorded from northern New Jersey.

The extent of this fracture is difficult to determine because either much of its outcrop is
on inaccessible quarry faces or is obscured by quarry ramps and debris dumps. There is
circumstantial evidence, pieced together from fragmental material encountered during mineral
collecting by members of the Franklin-Ogdensburg Mineralogical Society (FOMS), that this
fault extends the length of the pit and beyond.

During the dozen years prior to 1992 secondary fracture-filling minerals were frequently
found in the southern two thirds of the pit. Most of the finds were along the pit’s southeast side
in large boulders pushed from higher benches onto the quarry floor and appeared to be very
limited in extent. In the typical specimen small masses of fluorite or sphalerite were embedded
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in secondary carbonate. In some cases the secondary carbonate was calcite that mimicked the
marble country rock so closely that the contact between secondary and primary carlcite was
difficult to distinguish. Occasionally, the veins were wide enough to contain cavities lined with
free standing crystals.

The most extensive and mineralogically diverse of the fracture-filling assemblages that
were collected along the pit’s southeast side was encountered in 1985. Several hundred tons of
rubble were found, near the southern end of the pit, in which the Franklin Marble was fractured
and replaced by fine grained yellowish tan dolomite. The size of the boulders suggested that the
fault zone source of the material was at least several feet thick. The dolomite contained
numerous lenses of vuggy quartz up to several inches long and 1.5 inches thick. There were also
numerous flat, very narrow cavities lined with crystalline dolomite. The dolomite cavities also
contained crystals of rutile, quartz, and muscovite. Small anhedral crystals and masses of yellow
sphalerite were deposited late in the paragenetic sequence and are associated with both dolomite
and quartz. Groups of hemimorphite crystals were common in some cavities. The assemblage
and paragenetic sequence are similar to that of the Buckwheat dolomite in Franklin. The rubble
pile also contained fragments of massive sphalerite, partially oxidized to hemimorphite, in
fractured Franklin Marble.

During 1992, quarrying exposed a section of the fault zone approximately 150 feet long
and 10 feet thick that contained an anastamosing network of fissures and was flanked by a wide
bleached halo. In this section of the fault the fissures contained a well developed MVT mineral
assemblage (Cummings, 1993). The MVT assemblage exhibited features including vugs,
colloform and cockscomb textures, well layered mineral sequences, and massive
sulphide/fluorite that indicate deposition in abundant open space. It was possible to find the
entire basic MVT assemblage (dolomite, calcite, pyrite, sphalerite, galena, fluorite and barite) in
a single hand specimen. Subsequent quarrying has shown that the concentration of sulphides,
fluorite and barite was elongated nearly parallel to strike and had a very limited downdip
extension. In outcrops viewed in May, 1997 the fault zone was still marked by bleaching but the
fissures contained only secondary dolomite and, locally, very sparce pyrite and fluorite.

Summary

The Lime Crest quarry has been a significant economic force in Sussex County for nearly
80 years. The quarry was once mainly a producer of agricultural lime and pulverized limestone
but has evolved into a large producer of landscape, roofing and architectural products. The rare
combination of white color and very coarse crystallinity put the quarry in an advantageous
position to enter these markets. The operators have taken advantage of the resource available in
the microcline gneiss to become one of the area’s larger suppliers of construction aggregate and
railroad ballast. Huge reserves of both lithologies will sustain production for many years.

The Franklin Marble at Lime Crest has been of interest to mineralogists and mineral
collectors since the 1830’s. It is possible that the key to understanding the Franklin-Sterling Hill
ore deposits lies in the Franklin Marble. The most promising avenue toward deciphering the
depositional environment of the Franklin Marble is boron geochemistry. Studies are underway
to assess the distribution, mineralogy and isotopic fractionation of boron in the marble (Moore
and Swihart, 1990). Because the Lime Crest quarry is the largest exposure of the marble, is
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known to contain fluoborite-rich bands and is also collected regularly it will continue to be an
important source of mineral material of both scientific and esthetic interest.
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GENESIS OF THE NEW JERSEY HIGHLANDS MAGNETITE DEPOSITS ON THE
BASIS OF GEOCHEMICAL AND STRUCTURAL EVIDENCE

John H. Puffer
Geology Department
Rutgers University
Newark, NJ 07102

ABSTRACT

Magnetite ore samples from 37 of the approximately 300 abandoned iron mines in the
Proterozoic rocks of the New Jersey Highlands were chemically analyzed and the structural
relationships to their host rocks were noted. The magnetite of nine of the sampled mines is
hosted by coarse grained pyroxenite / amphibolite and occurs as disseminated ilmeno-
magnetite (1 to 7.5 % TiO,) lenses and shoots in shear zones parallel to the regional foliation.
Iron saturated fluids were mobilized during prograde regional metamorphism as iron rich
amphiboles recrystallized to form iron depleted pyroxenes. The magnetite of twelve of the
sampled mines is hosted by biotite bearing potassic schists and gneisses and sodic quartz
oligoclase gneiss and also occurs as concordant disseminated ilmeno-magnetite (1 to 5 %
TiO,) lenses and shoots. Tron saturated fluids were mobilized when ferruginous biotite
recrystallized to form gamet + K-spar + magnetite at 700 to 740 C® and 5 kb fyy,, in
equilibrium with concordant magnetite bearing pegmatite emplacement. Eleven of the
sampled mines are characterized by undeformed veins of ilmeno-magnetite hosted by quartz
oligoclase gneiss and less commonly by pyroxenite. The vein magnetite contains 1 to 3 %
TiO,, but only 0.05 to 0.09 % MnO in contrast to the 0.2 to 0.6 % MnQ content of the
disseminated magnetite. The magnetite of the undeformed veins precipitated out of
hydrothermal fluids from late to post tectonic sources, perhaps mobilized by the intrusion of
the Byram granite. The six remaining abandoned mines are hosted by coarse grained marble
or calcite, garnet, sulfide granulites and occur as disseminated magnetite (0.01 to 0.2 %
T10,), or manganiferous limonite lenses. The protolith was a marine carbonate enriched in
iron and manganese from submarine volcanic sources.

Only prograde reactions involving biotite and amphibole can release iron and volatiles as
they react to form garnet, feldspar, and pyroxene. In contrast, retrograde reactions proposed
by others tend to absorb iron and volatiles as ferrugionous epidote and chlorite are generated.

INTRODUCTION

During the 1930s, 40s, and 50s hydrothermal processes dominated the economic geology
literature under the influence of Lingren and Bateman. But during the 60s several
stratabound syngenetic deposits were recognized and several important ore deposits
previously described as hydrothermal were reinterpreted. Then, during the 70s
volocanogenic black smoker deposits dominated the literature and again large numbers of
deposits were reinterpreted almost to an extreme degree. Now, during the 90s, with the

In Benimoff, AL, and Puffer, J. H, (editors), The economic geology of northern New Jersey:
Field Guide and Proceedings of the fourteenth annual meeting of the Geological Association of New Jersey, 1997, p 71-96.
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advent of Fe-oxide (Cu-U-Au-REE) deposits, the literature seems to be going full circle back
to granite related hydrothermal solutions. The magnetite ore deposits of the New Jersey
Highlands have been variously described as having been generated by each of the above
processes and others. But history has shown that over-application of popular geologic
models can be dangerous.

A classical hydrothermal precipitation model for the New Jersey magnetite ores was
proposed by Sims (1958), and Sims and Leonard (1952). Then Buddington (1966),
Buddington and Leonard (1962), and Baker and Buddington (1970) modified the
hydrothermal model into a late stage igneous or deuteric release model whereby iron from
granite magma locally became converted into the alaskite that is found near some of the iron
mines.

Collins (1969a,b), Hagner and Collins (1963), Hagner et al., (1963), and Hagner and
Collins (1955), on the basis of host rock and ore zone chemistry, concluded that the iron
contained in amphibole bearing rock was mobilized by metamorphic processes and diffused
into shear zones. They proposed that iron rich amphiboles recrystallized into magnesium rich
pyroxenes plus magnetite. Puffer (1980) and Puffer et al., (1993) suggested a modified
version of the Collins model that applies to several of the New Jersey iron mines where
biotite was converted during prograde metamorphism into to garnet and feldspar plus iron
and potassium saturated water. Magnetite was then precipitated out of the water in a
granulite facies environment in shear zones.

A syngenetic model for some of the magnetite deposits involving the accumulation of
marine volcanogenic enriched sediments was proposed by Kastelic (1979, 80) and
Gunderson, (1986). Johnson (1996), suggests that the marine iron enrichment processes may
have been similar to those that concentrated the ore of the Franklin zinc mines. Puffer et al.,
(1993) apply a similar model to the carbonate hosted magnetite deposits in New Jersey. Pre-
Grenville iron accumulation is supported by the foliated texture of the ore and the concordant
orientation of the ore lenses to regional Grenville structures.

Foose and McLelland (1995) propose that the hydrothermal processes responsible for the
Olympic Dam iron oxide (Cu-U-Au-REE) deposit of South Australia also applies to the
magnetite deposits of New York and New Jersey. Meyers (1988) and Grow et al., (1994)
suggest that the abundant magnetite and hematite in an Australian calc-silicate-siltstone
breccia was precipitated out of hydrothermal solutions at 200 to 400 C° that were generated
during the intrusion of post orogenic granites. Foose and McLelland (1995) support their
hydrothermal argument with radiometric age dating that indicates a late tectonic intrusion of
granite in New York and an association of iron ore occurrences with undeformed veins and
pegmatites.

With the exception of Collins et al., (1969a,b), and Puffer et al., (1993) all of the above
genetic proposals were made with little regard to the chemical composition of the magnetite
that was being mined. The diverse chemical compositions of the magnetites, however,
provides data that are essential to an understanding of their genesis.

72



OBJECTIVE

Since the 1993 GANJ guidebook chapter titled “Precambrian Iron Deposits of the New
Jersey Highlands” (Puffer et al., 1993) some important new information bearing on the origin
of the iron ore has become available. The 1993 chapter presented new geochemical analyses
of a very large collection of New Jersey iron ore samples that I have accumulated over the
last 30 years, and offered some new ideas about the origin of the deposits consistent with the
geochemical data, particularly titanium content. However, it has recently become clear
(Volkert, 1993, 1995) that one of the host rocks and a possible source for some of the deposits
(Byram Granite) was emplaced in an anorogenic tectonic setting completely unlike the
anatectic, catazonal setting first proposed by Buddington (1959) and accepted by most
subsequent authors. In addition, a reexamination of the geochemical data presented in 1993
(particularly MnO content) together with several new analyses has made it clear that there are
four distinct geochemical groups of magnetite ore in the New Jersey Highlands. This
chapter, therefore is a major revision of the 1993 chapter together with a reassessment of the
origin of the deposits in light of the new information.

GEOLOGIC SETTING

The Precambrian rocks of the New Jersey Highlands may be grouped into six types: 1)
Granites including the Byram and the Lake Hopatcong granites and related syenites and
alaskites; 2} Diorite and related orthogneises; 3) The Losee Gneiss and related sodic meta-
volcanic quariz-oligoclase gneisses; 4) Meta-sedimentary schists and potassic gneisses; 5)
Marbles including the Franklin and Wildcat Marbles; and 6) amphibolites and pyroxenites
(Figure 1). Although most of the larger iron deposits occur within or close to the margins of
sodic metavolcanic rocks, potassic metasediments, and amphibolites (Figure 1) at least a few
iron deposits are also found within each of these 6 diverse rock types. However, Collins
(1969b) notes “the absence of magnetite concentrations in hornblende granite and alaskite”.

Almost all of the iron deposits occur as either disseminated or massive magnetite
concentrated in lenses oriented subparallel and conformable to the regional north-east strike
(Figure. 1) or as networks of closely spaced narrow discordant magnetite veins. Each of the
metamorphic rocks were subjected to granulite facies or at least upper Amphibolite facies
(>700 C°) conditions during the Grenville Orogeny that included considerable prograde
dehydration, some anatectic melting, and considerable pegmatite development.

The metamorphic rocks of the Highlands were then intruded by A-type granites (Volkert,
1993) during the waning stages of the Grenville orogeny. The initial granitic magma (the
Lake Hopatcong Granite) crystallized into an anhydrous assemblage of feldspar, quartz and
pyroxene with very minor pegmatite content and presumably carried little if any excess water
or other volatiles capable of carrying iron. A secondary or perhaps coexisting intrusion of
granite magma crystallized into the hornblende bearing Byram intrusive suite that includes
common undeformed hornblende bearing pegmatites with minor magnetite content.
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METHODS

Approximately 190 magnetite mines and prespects occur within the central New Jersey
Highlands area (Figure 1). During the last 30 years I have attempted to examine each of
these mines. Over half of them, however, are no longer exposed and have been completely
re-landscaped typically under housing developments or farms. Many of the mines that can be
located are poorly exposed as small cuts or are represented by only a few ore samples in a
dump or tailings pile.

About 40 mines, however, are still exposed or are represented by a large enough tailings
or abandoned drill core pile to gain some insight into the geology of the mine, and about 20
of the mines were well exposed when examined so that underground workings or large open
pits could be carefully sampled. Wherever possible a minimum of five three pound ore
samples were collected at each mine. The samples judged to be the most representative were
then cut, crushed and split into separates to be analyzed for whole rock chemistry, petrology
(hand specimen, thin section and polished section analyses), and oxide content. Each ore
sample chosen for analysis would be considered high grade on the basis of an oxide content
ranging from 25 to 95 volume percent.

Magnetite and in a few cases some ilmenite and biotite were separated from splits of
crushed ore using magnetic and heavy-liquid separation methods. Mineral separates were
further purified by hand picking under a binocular microscope. Mineral concentrates (Table
1) and high grade ore samples (Table 2) were chemically analyzed with a Rigaku wavelength
dispersive x-ray fluorescence spectroscope. Microprobe techniques were rejected as an
alternative method for magnetite analysis because of the presence of fine
exsolution/oxidation lamellac of ilmenite and other phases that have depleted the titanium
content and other elements in the host magnetite below solidus or primary precipitation
levels. Microprobe analyses yield erroneous or meaningless subsolvus compositions of
magnetites depleted by any elements exsolved into exsolution lamellae.

RESULTS

Four distinct populations of iron deposits within the New Jersey Highlands are identified
on the basis of the chemical compositions of the ores, the chemical compositions of the
magnetite components, the structural settings of the ores, and the lithologies of the host
rocks. One population consists of magnetite disseminated in coarse grained pyroxenite
lenses typically contained within larger amphibolite lenses interpreted as meta-basalt. The
magpnetite of the disseminated to massive pyroxenite hosted deposits contains 1 to 7 % TiO2
and 0.2 to 0.5 % MnO, (Table 1). A second population consists of disseminated magnetite in
biotite-sillimanite-garnet schist or K-spar gneiss with common magnetite bearing K-spar
biotite pegmatites and in biotite bearing quart oligoclase gneiss.. The magnetite of these
isseminat massive biotite bearing schist an iss hosted its contains 1 to 5 %
TiO2 and 0.3 to 0.5 % MnO, (Table 1).

A third population consists of networks of undeformed magnetite veins injected into

several rocks but most commonly in quartz oligoclase gneiss, interpreted as meta-dacite
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75



TABLE 1. COMPOSITION OF MAGNETITE FROM NEW JERSEY HIGHLANDS IRON ORE DEPOSITS
1. Disseminated to Massive

Host rock
Mine
weight %
Sio2
Tioz2
MnO
FeOt
V205

Host rock
Mine
weight %
Si02
TiO2
MnO
FeOt

Host rock
Mine
weight %
slo2
Tio2
MnO
FeCt
V205

Mine
weight %
5i02
Tio2
MnO
FeOt

Ford

1.21
252
0.21
79.38

Edison

1.33
1.31

0.4
94.01
0.06

Baker

1.65
2.7
0.08
94.23
0.09

Roseville

201

027
0.45
88.92

1.85
093
0.18
86.35
Q.07

xenite / A ibolite
Daven Mt Hope
1.42 21
1,35 1.33
0.41 0.35
88.95 8531

Dodge

2.01
3.04
033
92.45

2. Disseminated to Massive

Host
McKean

1.32
438
0.45
8495

Beach Gl

1.72
1.15
0.26
94.21

3. Undeformed Veins

iotite

ShermanB  DavenBY Bunker
1.21 1.21 1.42
1.03 487 3.99
0.41 0.55 0.36
93.18 8632 88.93

-l

Allen Randall Richard
1.59 1.32 1.28
143 287 211
0.07 0.09 0.05
95.22 89.39 88.32
0.07 0.08 0.07

4, Cathonate Hosted

SulfurHill  Andover* Ahles
087 395 025
0.02 0.01 0.08
0.15 275 073
87.54 78.53 85.22

l.eonard

0.99
1.26
0.07
93.21
0.09

Pikes Peak

0.41

0.1

0.68
86.41

Elizabeth

1.62
1.18
0.06
94.22
0.13

Cogell

0.98
532
0.53
79.72

Dickers

1.23
1.59
0.32
92.32

Evers

004

1.76

0.09
88.73

* Some of the MnQ may be unseparated fine pyrolusite mixed with a largely fine hematite concentrate.

DeHart

1.23
521

Chester

1.27
238
0.09
89.97
0.06

ScrubOak

1.4
0.05
0.06
86.86
0.01

Byrant Righter
0.89 073
1.97 1.64
0.37 0.35

91.46 91.28

oxenite Hosted
Hibemia Fairview
097 1.24
119 213
0.09 0.08

90.37 90.98

0.15 0.1

Gulick

0.86
1.22
0.36
87.31
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TABLE 2. CHEMICAL COMPOSITION OF IRON ORES

New Jersey Highlands Carbonate Hosted Iron Deposits

mine Sulfur Hill Andover  Ahles PikesPeak Mine H PA
wilght %
Sio2 29.39 5.98 16.86 1.87 30.45
Al203 1.78 3.84 4.06 0.28 0.96
Fe203t 32.52 74.83 50.91 45.12 §7.35
MnO 0.33 0.45 11.28 2.9 0.1
Ti02 0.04 0.07 0.01 0.01 c.1
Banded Iron Formations and Black Smoker Sea Mound
mine - Gogebic  Biwabik HamersleyMinasGeris Pacific
weight %
Si02 28.53 46.4 42 0.4 5242
Al203 0.92 0.9 0.3 1.23 0.36
Fe203t 68.56 40.58 37.3 51.01 30.26
MnO 0.22 0.63 0.14 0.25 0.49
TiO2 0.06 0.04 0.06 0.01 0.02

Highlands Gneiss, Schist, and Pyroxenite Hosted Deposits

mine Evers Baker Allen Randel ScrubOak Richard* Leonarg*
weight %

8i02 48.75 8.32 10.96 6.74 30.41 3.77 3.56
Al203 1.51 1.08 1.04 0.98 2.38 0.79 0.44
Fe203t 41.61 89.55 89.26 90.49 66.15 93.97 93.97
MnO 0.07 0.06 0.06 0.08 0.05 0.06 0.03
Tio2 1.32 2.54 1.29 2.78 0.28 1.3 1.15
mine Elizabeth* 12 Edison  Taylor Biue Hibemia H.Ledge Ford
weight %

SiO2 1.38 56.47 4.21 17.85 8.35 34 6.31
Al203 0.55 9.64 0.58 1.82 1.86 1.02 0.83
Fe203t 93.78 23.42 94.21 64.57 87.57 91.46 86.61
MnO 0.03 0.19 0.03 0.15 0.05 0.29 0.21
TiO2 1.09 1.18 0.82 0.83 1.19 4.39 3.54
* Bayely (1910)

Table 2: Chemical composition of iron ore samples and magnetite concentrates from mines hosted by marbles
or calc-silicate lenses within marbie from the New Jersey Highlands compared with analyses of BIF (banded
iron formation) from South America (VanN.Dorr (1973), the Lake Superior district (Bayley and James, 1973),
and Australia (Appel and LaBerge, 1987) and with hydrothermal (black-smoker) sediments from the east
Pacific Rise (Barrett and others, 1988). .
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Table 3

Fe203
FeQ
Tio2

Temp Co
log fo2

Fe203
FeO
TIO2

Temp Co
log fo2

Composition of Co-existing Oxide Pairs frem the Edison Iron Mine

Ore sample 145
imeno-mag ilmeno-hem
70.23 56.61
A77 283

1.01 16.16
748
-11.48
Microcli neiss

iimeno-mag hemo-ilmen

53.72 6.44
31.06 41.45
28 40.44
732
-13.665

Ore Sample 149
ilmeno-mag iimenc-hem
68.49 " 46.59
2527 16.32

0.88 2367
717
-12.133
Pegmatite
imeno-mag iimeno-hem
70.31 60.43
2657 14.25
0.7 20.29
707
-12.11

Temperatures and oxygen fugacitites based on Buddington and Lindsley (1964).
Ore sample analyses from Baker and Buddington (1970).

Geniss and Pegmatite analyses from Puffer (1975).
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QOre Sample 154
ilmeno-mag ilmeno-hem
63.84 29.1
2645 12.79
1.39 30.63
706
-13.332



(Volkert and Puffer, 1991). The magnetite of these undeformed vein deposits contains 1 to 3
% Ti02 and 0.05 to 0.09 % MnO, (Table 1).

The fourth iron ore population consists of magnetite or hematite disseminated in
carbonate bearing granulites and marble that typically contain garnet and sulfides. The
magnetite of these maring carbonate hosted deposits contains 0.01 to 0.25 % TiO2 and
commonly coexists with manganiferous limonite.

INTERPRETATIONS
1. Disseminated to Massive Pyroxenite Hosted Deposits
Characteristics:

Amphibolite and pyroxenite lenses and layers are found included within each of the rock
types of the New Jersey Highlands and range from a few cm to over 100 m in thickness. The
plagioclase of the amphibolites is typically andesine with variable hornblende, pyroxene, and
biotite contents. There are several genetic types of amphibolite and related pyroxenites in the
New Jersey Highlands (Puffer et al., 1993b) but the amphibolites and pyroxenites associated
with iron ore deposits are not typical of the common genetic types (the meta-basalts and
meta-shales) and are typically coarser grained and more mafic. Most pyroxenite hosted
deposits consist of ilmeno-magnetite disseminated with coarse grained pyroxene, plagioclase,
and minor chlorite in green lens shaped zones.

The ilmenite intergrown with magnetite in ilmeno-magnetite occurs as thin blades or
lamellae that resemble exolution lamellae but originate from subsolidus oxidation and
contemporaneous exsolution of ulvospinel (Buddington and Lindsley, 1964). The ilmenite
lamellae are widely spaced and make up less than one percent of typical polished magnetite
surfaces but there presence indicates titanium saturation and initial crystallization
temperatures higher than the magnetite-ulvospinel solvus. If low temperature oxidation or
weathering has effected the deposit, varying degrees of hematite replacement occurs along
microcracks in the ilmeno-magnetite host forming a grid-like intergrowth. The ilmeno-
magnetite of the pyroxenite hosted ore contains up to 7.5 % TiO, (Table 1) which is a level
that approaches the TiO, content of magnetite from mafic plutonic rock (Figure 3).
However, most disseminated magnetite from the New Jersey highlands overlaps the field of
magnetite from typical granite and pegmatite suggesting equilibration under similar T/P
contitions.

Many of the pyroxenite hosted deposits of the New Jersey Highlands are located in the
Dover iron mining district. Collins (1969) mapped the 24 square mile area around Dover,
New Jersey and sampled 773 specimens of pyroxenite and amphibolite. Collins compared
the unmineralized amphibolites with those containing magnetite deposits and found that
hornblende in unmineralized rock is relatively fine grained and aluminous (9.5 to 13.1
percent Al,O) and is typically rich in TiO,, FeO, MnO, Ca0O, K,0, V, Cr, Zn, Pb, Sr, and
Ba. In contrast, the amphiboles and pyroxenites of ore depostts is coarse grained containing
only 5.1 to 5.5 percent Al,O5 but relatively high concentration of Si0,, MgO, Na,O, Be and
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Bi. Collins found that the magnetite in country rock amphibolites also is relatively rich in
MnO, Ti0O,, V, Cr, Co, Ni, Cu, Zn, and Pb compared to magnetite in ore zones.

Examples:

Iron deposits hosted by amphibolite and pyroxenite include several described by Sims
(1958) as “skarn” deposits although carbonates are rarely found in more than trace amounts in
pyroxenite hosted ores and evidence of contact metamorphism is not clear. Some of the
larger mines hosted by pyroxenite are the Hibernia Mine and the Mount Hope Mine (Tables 1
and 2).

The Hibernia mine, as of 1958, was the third largest producer in the Dover district with
production in excess of 5 million tons of ore averaging 50 percent iron. The deposit strikes

N40° to 609E and dips steeply to the SE. It is tabular and averages about 3 meters thick.
The ore is composed of coarse grained massive magnetite with hornblende and pyroxene as
the principal gangue minerals together with minor quartz, plagioclase, biotite, and pyrite (or
pyrrhotite).

The main shaft at the Mount Hope mine is 2694 feet deep with levels at 200 foot
intervals. The ore is in part massive and in part laminated with layers of hornblende,
pyroxene, and biotite.

Origin:

The magnetite rich pyroxenite/amphibolite rocks consist primarily of magnetite,
clinopyroxene (principally augite with some diopside), and/or orthopyroxene (principally
hypersthene), plagioclase, common homblende, and minor quartz, mica, garnet, sillimanite,
epidote, pyrrrhotite, calcite, and chlorite. Prograde metamorphic reactions that involve this
assemblage include:

2 epidote => plagioclase + garnet + hematite + quartz + H,O

Ferrotremolite => Magnetite + quartz + orthopyroxene + H,0O

Hornblende + quartz => hypersthene + anorthite + clinopyroxene + H,0

Hornblende + 2 biotite + 17 quartz =>15 hypersthene + 4 orthoclase + 3 plagioclase + 5 H,O

Since the Fe/Mg ratio of each of the amphibole phases decreases during requilibration,
the released water is iron saturated. Since chlorine and fluorine are also expelled from
hornblende during dehydration, these anions were available to complex with iron and aid in
transmitting it to precipitation sites.

The stability of synthetic iron amphibole (ferrotremolite) was determined experimentally
by Ernst (1966), and breaks down to yield magnetite bearing assemblages at amphibolite to
granulite facies temperatures and oxidizing environments. Support for a prograde
metamorphic movement of iron is found in a series of papers authored by Collins and Hagner

80



(Collins, 1969a,b, Hagner and Collins, 1963, Hagner et al., 1963, Hagner and Collins 1955).
They provide abundant and compelling evidence that iron rich ferromagnesian silicates in
amphibolites have recrystallized in shear zones as Mg-rich silicates plus magnetite. The
process involves a decrease in modal homnblende and an increase in modal clinopyroxene and
biotite as magnetite concentrations are approached. They show that this process occurs in an
open system but without any introduction of material from a magmatic source. Their
calculations measure the chemical changes that would occur if amphibolites composed of
various mineral assemblages were recrystalized to form various magnetite enriched
pyroxenites. In most cases CaO, TiO,, MnO, AL,0j; is lost, SiO, is released to form quartz,
K0 is released to form biotite or potassic feldspar, and iron is released to form magnetite.

Their calculations are similar to conventional mass-balance calculations although they
do not balance due to the net loss of CaO, TiO,, MnO, and Al,0;. But since they assume
open system conditions, these elements may have been flushed out with the expelled water
during prograde recrystallization.

The most compelling evidence in support of hornblende as a source of iron for
pyroxenite hosted magnetite deposits is the consistent decrease in the iron content of
hornblende as magnetite ore is approached. For example, the FeO content of hornblende
from the couniry rock near the Hibernia magnetite deposit is 15.3 weight percent,
considerably higher than the 10.67 percent FeQ in hornblende gangue from the ore zone
(Collins, 1969). The biotite from country rock adjacent to Hibernia ore is also much richer in
iron than biotite in the ore. The biotite in Hibernia ore is extremely depleted in iron and
could be characterized as a phlogopite (Collins, 1969).

2. Disseminated to Massive Biotite Bearing Schist and Gneiss Hosted Deposits
Characteristics:

The host rocks of this population consists of : 1.) biotite schist; 2.) K-spar gneiss
containing variable quantities of magnetite, K-spar, biotite, quartz, sillimanite, garnet, and
plagioclase; and 3.) biotite bearing quartz oligoclase gneiss (Losee Gneiss). These potassic
and sodic rocks are generally interpreted as meta-sediments and meta-volcanics. Layers of
quartzite found associated with the potassic schists and gneisses support a meta-sedimentary
interpretation. The chemical composition of the sodic quartz oligoclase gneiss is consistent
with a meta-dacite protolith (Puffer and Volkert, 1991). Magnetite and biotite bearing
pegmatite lenses are commonly found emplaced concordant to the foliation of these host
rocks. Magnetite disseminated in these schists, gneisses, and pegmatites is concentrated in
lenses and shoots that are consistently concordant to the regional foliation.

The iron-titanium oxides of the ore zones include ilmeno-magnetite (magnetite with
ilmenite lamellae), hemo-ilmenite (ilmenite with hematite microintergrowths, and ilmeno-
hematite (hematite with ilmenite microintergrowths). Ilmeno-magnetite is the most abundant
oxide phase making up well over 95 percent of the oxides in most deposits. Wherever any
alteration has occurred, particularly weathering, the magnetite surfaces have been partially
oxidized to martite.

The ilmeno-magnetite composition of the schist, gneiss, and pegmatites is approximately
the same suggesting similar equilibration temperatures. The ilmeno-magnetite contains 1 to
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5 % TiO, and 0.3 to 0.5 % MnO, (Table 1, Figure 2) and overlap the chemical range of
magnetites from granites and pegmatites (Figure 3). However, the TiO, content of gneiss
hosted deposits greatly exceeds that of any banded iron formation or black smoker rock
(Figure 4) and the TiO, content of the gneiss hosted magnetites is less than typical of mafic
plutonic rock (Figure 3).

Examples:

Some of the larger and relatively well known disseminated lenses and shoot deposits
hosted by biotite bearing schist and gneisses include the Sherman-Bunker deposits and the
Edison deposits of the Franklin quadrangle. Typical ore, as described in detail by Baker and
Buddington (1970) and Puffer et al., (1993), consists of magnetite, quartz, potassium feldspar,
biotite, sillimanite, and garnet. The biotite content is particularly variable and is concentrated
in schistose layers. Portions of the Edison deposit are mineralized with sulfides (pyrite,
chalcopyrite, and molybdenite) that have locally led to saprolitic weathering through sulfuric
acid leaching. Pegmatites composed of magnetite, quartz, potassium feldspar, and biotite are
common throughout the Edison mine.

Origin:

Some of the balanced prograde metamorphic reactions involving the mineral assemblage
of the biotite bearing schist and gneiss hosted deposits that are transitional to or within the
granulite facies as presented by Hyndman (1985} include:

Biotite + H,O => biotite + sanidine + magnetite + H,O

Biotite + quartz => sanidine + magnetite + hematite + H,O

Biotite + 3 quartz => 3 hypersthene + 2 anorthite + orthoclase + H,0O
Biotite (annite) + sillimanite + 2 O, => muscovite + magnetite + quartz
Muscovite + biotite + 3 quartz => 2 orthoclase + almandine + 2H,0

Each of these reactions involve the kind of compressional prograde regional
metamorphism that occurred during the peak of the Grenville orogeny. The phase boundary
between the biotite + H,O and the biotite + sanidine + magnetite + H,O fields of the first
reaction listed above has been experimentally determined by Wones and Eugster (1965).
They show that as temperatures are increased the Fe/Fe+Mg ratio of the biotite is decreased.
Iron saturated water expelled from biotite as temperatures are increased is driven out of high
pressure zones into any permeable avenue of escape such as shear zones where magnetite
would then precipitate. A similar proposed origin for some of the iron deposits of the New
Jersey Highlands was proposed by Puffer (1980).

The release of iron from biotite accompanied by any dehydration and precipitation of
anhydrous phases such as garnet would set up a complex iron and potassium saturated
hydrothermal system. Released water would also contain any other volatile present in the
initial biotite such as Cl and F.

Martin and Piwinskii (1969) have experimentally shown that iron under a wide range of
pressures fractionates into a vapor phase out of calc-alkaline rock. They found that the
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presence of a melt, of a specific rock type, or of chloride, fluoride, sulfide, or carbonate
anions is not required for the leaching and transport of iron in a vapor phase. Their
subsolidus experiments confirm that iron behaves like potassium, and sodium which are

leached and then migrate readily from high temperatures (700° C at 5 kb) towards low

temperature zones (5600 to 4500 C) unlike calcium and magnesium which do not.

The upper stability of iron biotite (annite) was experimentally determined by Ernst
(1976). The conversion of biotite + quartz into the magnetlte + sanadine + quartz + iron
saturated fluid field may be forced by an increase in fO” or decrease in temperature at
constant composition. Increases in f0° typically occur in shear zones where hydrothermal
fluids have migrated and would be accompanied by a temporary drop in temperature as fluids
escape into overlying rocks. These temporary reversals in temperature and fO? occur during
ruptures or fluid pressure releases and may result in the kind of iron deposition that is found
in the Edison Iron mine.

The importance of fO? as a control on the phase equilibra of biotite, sanadine, magnetite
and ilmenite is demonstrated in the Wones and Eugster (1965) geothermometer and
geobarometer:

log fip0 = 3428 - 4212 l-xl)2 +log x, + 1/2 log fo; + 8.23 - log akaisizos - 108 ape3os
T

The fm_ o of a biotite + magnetite + ilmenite + sanadine assemblage in the host rock

adjacent to the ore zone of the Edison iron mine (Table 3) was calculated using Wones and
Eugster’s equation. The results of chemical analyses of minerals separated from Edison
magnetite ore (Puffer et al., 1993) indicate:

afe,0, of Edison magnetite = 0.914

aK AlSi, 0, of Edison host rock Kspar = 0.95

x] (mole fraction of annite) in the co-existing biotite = 0.5328

T = 1005 KO (based on magnetite/ilmenite geothermometer of Buddington and Lindsley

(1964)
log fop =-13.667

log fip o = 3.70281 atm or a fjjpQ = 5,044 atm.

A fip0 of 5,044 atm. and a temperature of 732 CO is in good agreement with a granulite
facies metamorphic environment and supports the interpretation that the biotite + magnetite +
ilmenite + sanadine host rock assemblage at Edison is an equilibrium assemblage.

Tron saturated vapors released from the biotite precipitated at slightly lower temperatures
and higher oxygen fugacitics to form magnetite concentrations in shear zones. The chemical
compositions of several coexisting magnetite + ilmenite (and ilmeno-hematite) pairs
separated from the orc zone at the Edison mine and from a pegmatite analyzed by Puffer
(1975) are listed in Table 3. The oxide pairs yield temperatures in a 706 to 748 CO range only

slightly less than the 732 C© of the host rock and the 707 CO of a pegmatite located in the
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Edison ore. The oxygen fugacity range (-log f02) of the magnetite ore zone is 11.5 to 13.3,
slightly higher than that of the host rock; again in good agreement with the experimental
studies.

A major portion of the iron contained within the biotite schist and gneiss hosted ore
zones, therefore, originated from within the metasedimentary or metavolcanic protoliths and
was simply mobilized in response to prograde metamorphic reactions and reprecipitated in
ductile shear zones in response to a drop in water pressure.

3. Undeformed Veins Deposits
Characteristics:

Many of the magnetite deposits hosted by the Losee Gneiss (a quartz oligoclase meta-
dacite) and a few deposits hosted by pyroxenite consist of an undeformed network of sharp
discordant and condordant veins composed of magnesium depleted ilmeno-magnetite (Table
1). Some veins coalesce into dense and massive lenses with quartz and oligoclase as the
principal gangue minerals. In addition, a few magnetite veins were also injected into other
Highlands rock types but are rare in granite, particularly Lake Hopatcong Granite. Typical
low temperature hydrothermal minerals such as sericite, and chlorite are conspicuously rare
suggesting that mineralization temperatures exceeded their stability field. Few magnetite
bearing pegmatites are associated with the vein networks. Pegmatites contained within the
Losee Gneiss are common but are typically small concordant lenses of coarse grained quartz
and oligoclase. The magnetite from several mines dominated by magnetite veins (Table 1,
Figure 2) contains 1 to 3 % TiO2 and 0.05 to 0.09 % MnO. The titanium and vanadium
levels of the vein magnetites overlap those of the disseminated to massive magnetites (Table
1) suggesting an overlapping temperature range of emplacement. However, with few
exceptions the MnO content of the vein magnetite is distinctly lower (Figures 2 and 3).

Examples:

Undeformed vein deposits hosted by quartz oligoclase gneiss include several within the
Dover mining district as described by Sims (1958) and Bailey (1910). The Dover district
included the largest and most productive mines in New Jersey. The geologic map of the
Dover district (Sims, 1958) locates most of the 91 listed mines in “oligoclase-quartz-biotite
gneiss” and “gneissic albite-oligoclase granite”. Sims (1958), however, defines the albite-
oligoclase granite as medium grained rock that is composed almost entirely of plagioclase
(An8-Anl5) and quartz with minor muscovite, augite, hornblende, and biotite. Since the
Losee Gneiss and the gneissic albite-oligoclase granite of Sims have the same texture and
mineral composition I have found them to be indistinguishable and group them together,
(Figure 1). Some of the larger Dover area mines are the Richard Mines, the Leonard, and the
Elizabeth.

The Richard Mines consists of two deposits: the Mount Pleasant and the Richard. The
main shaft 1s 1,244 feet deep with levels spaced every 200 feet. As of 1958 the Mount
Pleasant deposit was being developed on the 1300 and 1500 levels and the Richard deposit
was being developed on the 1500 level. The Richard deposit is tabular, strikes N4OE and
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dips 30° to 500 SE, with an average thickness of 5 meters. It locally contains thin layers of
biotite schist. The Mount Pleasant deposit consists of three well-defined shoots that dip 40 to

600 SE. The largest shoot is about 3 meters thick.
The Leonard deposit, up to 8 meters thick and oriented N45°E with a vertical dip, was
mined continuously from the surface to the 1700” level of the Mount Hope mine (Sims,

1958). The Elizabeth deposit strikes N45°E but dips 70° SE and is up to 7 meters thick; for
structural details see Sims, 1958.
The Scrub Oaks mine consists of six levels 250 feet apart. The deposit is a tabular body

that includes several shoots. The ore body and the country rock strike N33CE and dip 55°SE.
The Scrub Qaks ore consists primarily of magnetite bands or veins that are parallel to the
schistosity of the host rock and veinlets that cut across the schistosity. Smith (1933) describes
clear replacement textures including the observation that “The magnetite surrounds corroded
remnants of the silicate minerals.” and is “... unmistakably later in origin”.

The Scrub Qaks ore also includes considerable hematite. At the 1586 and 1587 stopes of
the no. 5 level, hematite forms about 50 percent of the ore but is less than 5 percent of the ore
elsewhere in the mine. The gangue minerals of the Scrub Oaks ore include the albite and
quartz of the hosts Losee Gneiss but also include common apatite and tourmaline, neither of
which are found in Losee Gneiss outside of the ore deposit. In addition, their are several
rare-earth minerals concentrated in the ore, particularly in coarse grained magnetite ore zones
and associated pegmatites (Klemic et al., 1959). Doverite, xenotime, bastnaesite, chevkinite,
apatite, zircon and monazite are the principal radioactive rare-carth bearing phases
concentrated at Scrub Qaks that are described by Klemic et al., (1959). In addition to the
atypical mineralogy of the Scrub Oaks mine, the composition of the Scrub Oaks magnetite is
atypical of most vein deposits and contains much less TiO, and V,05 than any other analyzed
vein magnetite.

Origin:

In contrast to the disseminated concentrations of ilmeno-magnetite in lenses parallel to
host rock foliation, the ilmeno-magnetite veins are chemically distinct and commonly cut
across foliation planes. The ilmeno-magnetite veins were, therefore, precipitated out of
hydrothermal solutions after peak regional metamorphism from a late to post-tectonic source.
The titanium and vanadium levels of the vein magnetites overlap those of the disseminated to
massive magnetites (Table 1) suggesting an overlapping temperature range of emplacement.
However, with few exceptions the MnO content of the vein magnetite, which is independent
of precipitation temperature, is distinctly lower (Figures 2 and 3). The contrasting MnQO level
is evidence of a hydrothermal source unlike the source of the disseminated deposits.

Additional evidence of high temperature precipitation is the absence of low temperature
hydrothermal minerals such as sericite, chlorite, calcite, epidote, or sulfides along the
margins of most of the veins. The wall rock of most veins was unaltered by retrograde
hydrothermal reactions and the antiperthitic textures of some wall rock oligoclase is
preserved.

A plausible source of iron enriched hydrothermal vapor is the Byram Granite as
suggested by Buddington (1966), Buddington and Leonard (1962), and Baker and Buddington
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(1970). These authors proposed a late stage igneous or deuteric release of iron from Byram
granite magma as it locally became converted into an iron depleted alaskite facies that is
commonly found near some of the iron concentrations. Their proposal is similar to that of
Foose and McLelland (1995) who also suggest a granite source of iron rich hydrothermal
fluid. Buddington (1959} described the Byram granite as catazonal with most of the
characteristics of what later became known as “S-type” granite. However, Volkert (1993) has
shown that the Byram granite is an “A-type” or anatectic granite implying post or at least late
tectonic emplacement. Recognition of the Byram Granite as A-type is evidence that Foose
and McLelland (1995) use to include the Highlands magnetite deposits in the global category
of iron deposits that are characterized by an association with such granite. Additional
characteristics of Fe-oxide (Cu-U-Au-REE) deposits include an association with Cu, U, Au,
and REE mineralization, shallow brittle emplacement in tectonic breccias, low temperature
(200 to 400 C°) precipitation temperatures, very low titanium contents in precipitated
magnetite, and an association or dominance of hematite mineralization.

None of these additional characteristics apply to any of the Highlands magnetite deposits
hosted by potassic meta-sedimentary rocks or pyroxenite which are devoid of Cu, U, Au, and
REEs, occur as concordant lenses emplaced in ductile shear zones with pegmatites in
equilibrium with granulite facies mineral assemblages, lack low temperature hydrothermal
mineral assemblages including hematite, and typically contain 3 percent but as much as 7.5
percent Ti0,. The typically 2 percent TiO, content of magnetite from Highlands vein
deposits is also much greater than the < 0.1 percent TiO, levels of Fe-oxide (Cu-U-Au-REE)
type ores such as the Kiruna or southeastern Missouri iron ores. However, the occurrence of
A-type granite near the New Jersey Highland vein deposits and their undeformed vein style
of emplacement is consistent with an Fe-oxide (Cu-U-Au-REE) type of emplacement.

Fe-oxide (Cu-U-Au-REE) type mineralization may be particularly applicable to the
magnetite veins of the Sterling Lake magnetite deposit of the Highlands area described by
Hotz (1953) and Puffer (1975). The Sterling Lake veins are associated with hematite and
magnetite pegmatites that are completely undeformed. Euhedral crystals of hematite and
magnetite containing only 0.1 percent Ti0Q2 are disseminated in a pegmatite consisting of
unaltered microcline that could only have been emplaced after compressional regional
metamorphism.

Of all the diverse iron mines in the New Jersey, the one that lends itself most clearly to
an Fe-oxide (Cu-U-Au-REE) type interpretation is the Scrub Oaks mine located in the Mine
Hill area on the western edge of Dover. Most of the characteristics of Fe-oxide (Cu-U-Au-
REE) type ores (Ilitzman et al., 1992) that do not apply to most Highlands deposits do apply
to the highly atypical Scrub Oaks mine:

1. The composition of Scrub Oaks magnetite contains <0.1 percent Ti0O2 (Figure 2) and
closely resembles magnetite from Fe-oxide (Cu-U-Au-REE) type Kiruna and southeastern
Missouri deposits.

2. The magnetite commonly occurs in veinletts that crudely resemble the breccia complex of
the Olympic Dam deposit.

3. A major portion of the ore is hematite.

4. Some of the wall rock of the magnetite veins is altered to sericite and chlorite.

5. Late veins rich in calcite, pyrite, and chalcopyrite cut through the ore deposit.
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6. Uranium and REE minerals (including doverite, xenotime, bastnaesite, chevkinite, apatite,
zircon, sphene and monazite) are mixed with the magnetite and commonly occur as
aggregates that enclose euhedral crystals of magnetite.

A plausible case, therefore, can be made that the Scrub Oaks mine and possibly some of
the other undeformed vein deposits of the New Jersey Highlands are genetically related to the
intrusion of A-type granites.

4. Marine Carbonates Hosted Deposits
Characteristics:

This group includes most of the disseminated iron deposits contained within the Franklin
Marble and the carbonate enriched meta-sedimentary rocks of the New Jersey Highlands
including some but not all of the rocks described as “skarns” by Sims (1958). Such deposits
are common in three separate areas of New Jersey, near the towns of Belvidere, Franklin, and
Andover. The host rocks of this group typicaily consist of coarse grained magnetite,
carbonates, garnet, sulfides granulites and marble with highly variable concentration of
plagioclase, amphibole, and pyroxene. The ore mineral is typically magnetite but a few
deposits contain red hematite. In each case the deposits are devoid of ilmenite. The
magnetite contains 0.01 to 0.25 % TiO2 and 0.06 to 0.75 % MnQ. In the case of the Andover
deposit the ore consists of manganiferous hematite containing 2.8 % MnO.

Examples:
Warren County Deposits.

The magnetite deposits of Warren County located east of Belvidere, New Jersey are
described by Kastelic (1979) as sharply bounded tabular-shaped bodies composed of
magnetite and quartz with minor pyrite. Most of these deposits are hosted by Franklin
Marble or calc-silicate lenses adjacent to or surrounded by marble. One of the larger mines
in this marble belt is the Ahles mine which was described by Bayley (1910) as a deeply
altered soft limonite-pyrolusite rock with minor residual magnetite containing up to 11
percent MnQ, and very low concentrations of Ti0,, P,0Os, and S (Table 2). None of the
mines in the marble belt have been preserved and are no longer visible although the Ahles
mine dump was a source of ore samples. Some of the marble belt mines, including the
Kaiser, Barton, Pequest, and Washington mines, are hosted by calc-silicate rocks that
Kastelic (1979) interprets as metamorphosed meta-sediments including siliceous siderite
muds intercalated with siliceous dolomite. Kastelic (1979) rejects the suggestion made by
earlier workers that the magnetite rich cale-silicate rocks are skarns formed by the intrusion
of granitic rock and points out the absence of igneous intrusions near the mines of Warren
Co. that could have been the source of iron-bearing fluids.
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Andover Deposits.

Another example of metamorphosed marine carbonate hosted magnetite is the Andover
mining district (Field Trip Stop #4, this guidebook) described by Sims and Leonard (1952).
The district consists of two large mines (the Andover and the Sulfur Hill) and two small
mines (the Tar Hill and the Longcore). The ore at the Andover mine consists primarily of
hematite, fine grained earthy iron hydroxides, red amorphous silica (jasper) and minor
concentrations of relic magnetite. The ore at the Sulfur Hill mine is disseminated magnetite
with calcite, dolomite, andradite garnet, pyroxene, and pyrrhotite with minor pyrite,
marcasite, sphalerite, chalcopyrite, galena, and molybdenite. The Andover ore is interpreted
by Sims and Leonard (1952) as the product of supergene alteration of Sulfur Hill type ore.

Franklin Deposits.

Other examples of deposits hosted by marine carbonates are the magnetite deposits
associated with the footwall marble of the Franklin zinc ore body. An approximately one
mile long band of disseminated magnetite rich marble (the Furnace magnetite bed) occurs
between the Franklin zinc ore layer and the adjacent Cork Hill gneiss.

Origin:

The chemical composition of the carbonate hosted deposits, particularly the very low
titanium content, resembles typical Precambrian banded iron formation (BIF), (Table 2 and
Figure 4). Although the carbonate hosted group, unlike typical BIFs, is not banded with
jasper or chalcedony, it may share a similar depositional environment. The protolith of BIF
deposits is usually interpreted as marine sediment that has been enriched in iron by either
distal or proximal volcanic processes (Gilbert and Park, 1986). Support for such an
interpretation is found by examining iron concentrations currently being precipitated near
volcanic vents in the East Pacific Rise. Rock composed largely of iron oxide and silica with
very low titanium values comparable to BIFs and the Carbonate Hosted magnetite deposits of
New Jersey have been found near volcanic vents from the Galapagos hydrothermal mounds,
DSDP Leg 70 (Barrett et al., 1988), along the East Pacific Rise (Table 2)

There are several chemical similarities (Table 2). The very low TiO, and Al,O; content
contents of carbonate hosted deposits from New Jersey closely resemble BIFs such as the
Bewabik Iron Formation, particularly ore from the “Siderite Facies” (Bayley and James,
1973). The TiO, content of iron enriched volcanic exhalatives is consistently less than 0.1
percent {Table 2) in distinct contrast to the 2 to 25 percent TiO, content of magnetite
contained in igneous rock (Buddington and Lindsley, 1964) and the 1 to 7 percent TiO,
content of magnetite contained in the schist and pyroxenite hosted magnetite deposits of New
Jersey.
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THE CLINTON MANGANESE DEPOSIT

Donald H Monteverde
New Jersey Geological Survey
P.O. Box 427
Trenton, New Jersey, 08625

ABSTRACT

The Clinton manganese deposit is a relatively unknown mineral occurrence in Hunterdon
County, New Jersey after numerous years of sporadic development. Very little of the mineralized
area remains undeveloped. The deposit lies south of Clinton Borough, within Clinton Township, at
the intersection of the New Jersey Highlands and the Piedmont Provinces. The Jutland Sequence
forms the host rock for the mineralization, and it consists of a thick package of variegated shales
and minor interbedded sandstone, chert and limestone of Late Cambrian through early Middle
Ordovician age suggested as deposited in an upper slope to outer shelf environment (Lash and
Drake, 1984). A north, northeast structural trend of the units around Clinton curves into the more
general northwest regional trend. Numerous northwest trending folds and faults permeate the
Paleozoic section. Northeast trending, southeast dipping normal faults, related to Mesozoic rifting,
also cross cut the local area of the mineralization. Mesozoic fanglomerate deposits crop out just
south of the manganese prospect.

Workings on the site show a punctuated history. The first record of the prospect comes
from Cook (1865) when the mineralization was mistaken for iron ore. Investigations and limited
development on the site continued during the 1860's, 1900's, 1918 and lastly in 1938. All work
proved to be short lived, as interest seemed to follow the market value for manganese. Historical
reports on manganese oxide content vary from 10 to 45% with the mineral assemblage containing
pyrolusite, braunite and/or psilomelane (romanechite). Ore lies within a three- to four-foot thick
zone and consists of two to three inch seams along bedding planes. Some investigations listed the
ore as forming veins. Workings included several pits yielding a combined length of one thousand
feet. The largest pit covered a volume of sixty feet long, twenty-five feet deep and six feet wide at
the bottom. One ninety-foot shaft was dug to intercept all the zones at depth. Later work
mentioned other mineralized regions within the Jutland region.

Previous investigations performed only limited studies on the ore genesis. Supergene
enrichment was the preferred process of emplacement and suggested source horizons included
Mesozoic diabase or Proterozoic granites and gneisses. This study supports the previous
description of mineralization as several new exposures were found elsewhere within the Jutland.
This study proposes that the manganese could have initially formed from primary deposition in the
deep-water sediments. Subsequent remobilization of the manganese allowed enrichment at the
present locale. The existence of a recently discovered bentonite in the Jutland area along with tuffs
and volcanic rocks in the related Hamburg Klippe in Pennsylvania display the existence of volcanic
activity as a possible source for the mineralization. The research is on going.

In Benimoff, A.I, and Puffer, J.H., (editors), The economic geology of northern New Jersey:
Field Guide and Proceedings of the fourteenth annual meeting of the Geological Association of New Jersey, 1997, p 97-114.
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Figure 1. Site geologic map of the Clinton Manganese deposit, High Bridge, New Jersey
topotgaphic quadrangle (from Monteverde and others, in press).
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INTRODUCTION

New Jersey has a long detailed history of mining activities. Development of this mineral
potential drove a prosperous industry, thereby aiding the early growth of the state. The mineral
wealth of the state was exploited long before the landing of the first Europeans (La Porta, 1996).
Early man quarried and mined the chert found in the carbonate rocks of the Valley and Ridge for
various tools necessary for their survival. La Porta (1996) showed that these early “geologists™
followed select beds of chert for exploitation. Studies of these early mining attempts suggest a
highly organized technology using locally derived quartzite material in quarries more than 200 feet
long. '

The arrival of colonists from Europe began a new era of mineral exploration. One of the
oldest works includes the Pahaquarry Copper Mine. In the 1600's, the Dutch colonists prospected
and developed this site along the northwest slope of Kittatinny Mountain within the Bloomsburg
Red Beds (Woodward, 1944). Later, more copper mines, located in the Mesozoic Basin rocks,
opened in the 1700 through 1900's (Woodward, 1944).

A second important resource in New Jersey was iron ore. Many old iron mines dot the
countryside (Bayley, 1910). These mines occur predominantly in granites and gneisses and rarely
in carbonate inliers, all within the New Jersey Highlands. They formed a significant part of the
industrial development of New Jersey.

One of the last active mines to close was the Sterling Hill Mine, last worked by the New
Jersey Zinc Company (Frondel, 1990; Metsger, this volume). The zinc ore comes from the Franklin
Marble in the Ogdensburg and Franklin region. This area has one of the longest histories of
workings within the state. Spencer (1908) suggested the possibility that the colonists prospected in
this deposit as early as 1650. The first authenticated removal of ore is in 1774 (Spencer, 1908).

One commodity rarely associated with the mining industry of New Jersey is manganese.
Although it did form a byproduct of other mining activities it was not the primary resource desired.
A history exists of prospecting and limited working of a manganese deposit in the Clinton area of
Hunterdon County. This prospect crops out within the Jutland Sequence (Perissoratis and othets,
1979; Drake and others, 1996; Monteverde and others, in press). Original workers characterized the
host formation as Mesozoic rocks (Cook, 1865, 1868) and later within the Martinsburg Formation
(Markewicz, 1967; Lyttle and Epstein, 1987). Market fluctuations of the price of manganese drove
the speculation and development of this site. The following will outline the geology and history of
the Clinton manganese deposit and speculate on possible genesis.

REGIONAL GEOLOGY

The Clinton manganese prospect developed in a structurally complex area in north central
New Jersey. A boundary between two physiographic provinces, the New Jersey Highlands and the
Piedmont Province, lies immediately south of the prospect(figure 1). It divides the older Paleozoic
and Proterozoic units of the Highlands from the younger Mesozoic rocks in the Piedmont to the
south.

Proterozoic-aged gneiss and granitoid rocks along with minor amounts of marble comprise
the dominant units of the Highlands (Kummel, 1940, Drake, 1984). They record the signature of
the Grenville Orogeny (Drake and Volkert, 1991; Drake and others, 1991). Younger rocks of the
New Jersey Highlands include early Paleozoic-aged basal sandstones and passive margin
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carbonates of the Kittatinny Supergroup (Kummel, 1940; Drake and Lyttle, 1985). The Kittatinny
consists of, from oldest to youngest, the Leithsville Formation, Allentown Dolomite, and the
Beekmantown Group. The approximately 3000 foot thick Kittatinny forms the New Jersey portion
of an extensive carbonate platform developed throughout the Appalachians during this time period.
Dolomite and rare limestone, siltstone and shale comprise its lithology. Deposition of this
carbonate dominated package in New Jersey was almost entirely restricted to the near shore
environment. Age of the Kittatinny ranges from Early Cambrian to Early Ordovician.

Time equivalent to the upper part of the Kittatinny Supergroup is the Jutland Sequence
(Drake and others, 1996). It forms an interbedded package of red, green and gray shale, siltstone
and minor limestone and sandstone. Monteverde and others (in press) estimated the thickness of
the Jutland at 3,800 feet. Markewicz (1967) proposed a near shore environment with intermittent
deep water cycles for the middle part of the Jutland and deeper marine conditions for the lower to
upper sections. He described it as a member of the Middle and Late Ordovician Martinsburg
Formation and stated that the fossil evidence was inconclusive for the older age given by Dodge
(1952). Perissoratis and others (1979) suggested deep-water conditions for the Jutland and gave a
Lower Ordovician age. Lash and Drake (1984) correlated the Jutland to the Windsor Township
Formation of the Greenwich Slice of the Hamburg Klippe, which formed in a continental slope
environment. Lyttle and Epstein (1987) mapped the eastern half of the Jutland as Martinsburg
Formation while differentiating the western half as Jutland Klippe rocks. Drake and others (1996)
and Monteverde and others (in press) maintained the Jutland as deeper water deposits and time
equivalent to the Beekmantown Group of the Kittatinny Supergroup. Fossil evidence, consisting of
graptolites and conodonts, yields an age ranging from Late Cambrian through Early Ordovician
(Perissoratis and others, 1979; Karlins and Repetski, 1989; Repetski and others, 1995; Parris and
others, 1995, Parris, written communication, 1996, Parris and Cruikshank, 1986).

The Middle Ordovician Jacksonburg Limestone lies unconformably above the Kittatinny
Supergroup. Generally this contact is a disconformity with variations up to 10 degrees. The
Jacksonburg consists of a lower fossiliferous, fine-grained limestone that grades upward to
argillaceous limestone. It marks a marine transgression that continues to deepen through a
carbonate platform margin type into the deep-water flysch of the overlying Martinsburg Formation.
Plate convergence from the Taconic Orogeny drove this Middle to Late Ordovician transgression.
The Martinsburg does not crop out in the vicinity of the Clinton manganese deposit, but occurs
approximately 7 miles to the north in Musconetcong Valley.

Lying unconformably above all older rocks is the Triassic and Jurassic Newark Basin
sediments. The major stratigraphic units of the Newark basin include, from older to younger, the
Stockton, Lockatong and Passaic Formations. Rift clastic units including red brown siltstone,
sandstone and cobble and pebble conglomerates comprise the Stockton and Passaic. Along strike to
the southwest, dark gray to black argillite to mudstone from a Jacustrine environment dominate the
Lockatong and develop thin traceable basin wide cycles in the Passaic Formations. Jurassic-aged
diabase intruded the sedimentary units of the Mesozoic basin and lies to the east, upholding
Cushetunk Mountain.

All the rock units have undergone some degree of deformation. Mesozoic rocks in the
Clinton region formed in a relay ramp between two major fault segments (Schlische, 1992, 1993).
These fault segments funneled fluvially derived sediments from the eroding Highlands. Localized
rider blocks also exist to the west (Schlische, 1992, 1993). Dominant joint trends formed paralel
to the bounding listric fault traces, which trend northeast, and the north trending intrabasinal
Flemington Fault. Paleozoic formations portray a variable deformational signature containing both
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Figure 2. Photograph of one of the trenches dug during the development by the New Jersey
Manganese Company in 1918.

reverse and normal faults and folds. Reverse faults, folds and corresponding cleavage and joints
trend northwest in the Clinton area, parallel to local strike of bedding. Mesozoic normal faults,
trending northeast, related to rifting also cut these units. Ratcliffe and Costain (1985), Burton and
Ratcliffe (1985), Ratcliffe and Burton (1985), and Schlische (1992) suggested that the Newark
basin bounding normal faults are reactivated Paleozoic-aged reverse faults.

HISTORICAL BACKGROUND OF MANGANESE EXPLORATION AND
DEVELOPMENT

The Clinton manganese mine has a punctuated history with frequent reinvestigations
proceeding and during times of armed conflict. First note of any investigations in this region
appears in Cook (1865). The occurrence, on the land of JT Leigh, future mayor of Clinton, lies
between Clinton and Clinton Station. Cook (1868) suggested the original search was for iron ore as
"[t was said to be hematite." He noted a strong resemblance to manganese and analysis recorded 45
per cent manganese oxide. The material worked at that time consisted of a three or four foot wide
vertical vein without apparent gangue. Red sandstone, believed to be part of the Newark Basin, was
described as the host rock.

In a later publication. Cook (1868) went into greater detail in the description of this mineral
occurrence. He listed the location as near Clinton, on the land of John T. Leigh and the estate of
General George Taylor, a Union General killed at Manasses in September 1862. At this time the
workings were several discontinuous shallow excavations approximately five feet deep and trending
southeast for one hundred and fifty feet in length. He described the vein as approximately ten feet
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Figure 3. Photograph showing the limited amount of workings during the development in 1918 by
the New Jersey Manganese Company. Photograph appears to be looking northwest and the
workings would be down the slope towards the north(right corner of picture).

wide and cross cutting the host rock stratification. Cook (1868) stated the ore as 47 per cent
metallic manganese in the forms of pyrolusite and braunite. Accessory material included 7 per cent
iron and 25 per cent insoluble material. The Newark Basin rocks remained as the host assemblage
as Cook (1868) stated "red sandstone and fine quartzose conglomerate" formed the hill containing
the workings. Twenty tons were removed, including one railroad car sent to the blast furnaces in
_nearby Bethlehem, Pennsylvania.
Weeks (1886) noted the initial speculation of the Clinton manganese deposit as iron ore.
The manganese oxide mineralogy consisted of pyrolusite and braunite with a chemical analysis of
47 per cent metallic manganese, 7 per cent iron and 25 per cent of insoluble matter. The host rock
is again listed as "Triassic rock." The source of Weeks' (1886) information appears to be Cook
(1868) as no new information was given. Subsequent information of the ore sent to blast furnaces
(Cook, 1868), listed the investigation of the material for use in the production of spiegel iron
(Weeks, 1886). Results of the study at the steel works in Bethlehem proved unsatisfactory and
production apparently halted.
Smock (1894) used Cook (1868) as a source in noting the manganese occurrence. Smock
restated the mineralogy as pyrolusite and braunite and described the host as "Triassic sandstone.”
Letters on file at the New Jersey Geological Survey (NJGS), Trenton, New Jersey record a
rebirth in the exploration of the manganese mineralization in 1902. J.5. Stewart of Phillipsburg, NJ,
as president of a newly founded company with capital of $300,000, initiated prospecting into the
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Figure 4. Photograph of one of the excavations of the New Jersey Manganese Company in 1918.
Bedding is dipping from the upper left to the lower right. Other parting planes are evident in a near
vertical orientation.

extent of the manganese occurrence. Surface digging increased to one thousand feet in length in
nine excavations including the original trench from earlier prospecting. Manganese occurred
throughout the entire length beginning at six inches and increasing downward to a seven feet wide
zone. Water filled the trenches and caused the company to develop an adit ninety feet long with the
" intent of intercepting all the ore outlined in the trenches at depth. Chemical analysis yielded 30 to
45 per cent manganese with local high contents of iron and phosphorus. U.S. Steel Corporation
received samples and recommended the ore quantity be proven. Mr. Stewart's company intended to
sell stock to finance the exploration development of the property. NJGS geologists visited the
locale, informally named the Crammer site, and collected samples for analysis. No further
information of this attempt was encountered.

Interest in the manganese prospect resurfaced during the latter years of World War 1 due to
the increased price of manganese from $15.00 to $68.50 for domestic ore. A mining engineer from
New York City investigated the site on May 1917 and suggested the deposit represented a "true
vein" (Kirby Thomas, written communication to NJ State Geologist, May 16, 1917). There is some
question if this inquiry concerns the Clinton manganese deposit or a different one in the Annandale
area. Mr. Thomas listed the site as "near Annandale, New Jersey, on the old Fox place, now owned
by Mr. Sharp”. He further stated the host rock as "schist”. This information does not agree with
previous descriptions of the Clinton site. Also, a record exists of a psilomelane locality in
Annandale but it lacks a complete site description (W.S. Valiant, written list of mineral localities of
New Jersey dated 1914, on file at NJGS). Research on maps of the Annandale area (Hunterdon
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County Atlas of 1873) outlined several lots in the northern part of the town under the name of Fox.
This region falls within a belt of Proterozoic metasedimentary rocks (Monteverde and others, in
press). Several graphite mines occur in this area (Volkert, this volume). The lack of a complete site
description of the “Annandale manganese occurrence” makes it impossible to definitely know
which site Thomas queried. The response from the State Geologist (the copy in the NJGS files was
unsigned) to Mr. Thomas only gave a description of the Clinton site. No further correspondence
was found on this inquiry.

Activity did commence late in World War I. By February 1918, a company under the title
of the Annandale Mining Company actively worked the deposit. At that time Twitchell (written
note on file at the NJGS) noted 50 tons of ore removed with manganite as the probably ore mineral.
Twitchell described thin layers of ore, two to three inches thick, continuing downward thirty to
forty feet and pinching out at folds in the shale with the total ore zone three to four feet thick. Ore
locally reoccurred in new layers one or two feet below the last mineralization. The total ore zone
measured three to four feet thick. Kummel (written note on file at NJGS) revisited the site in March
of that same year. He described the trend of the openings as near north south in an uphill direction.
The largest dig continued fifty- to sixty-feet long, twenty to twenty-five feet deep and three to five
feet at the bottom (figure 2). The workings remained limited (figure 3). Kummel further described
the host rock as "shales, much cleaved and slickensided” (figure 4). He suggested that the rock
resembled the regional Triassic rocks but due to the cleaved nature of the rock is better associated
with the "graptolite shale west of Clinton." This is the first note of the host rock correlated with the
Jutland Klippe Sequence (Drake and others, in press). During this year the company name changed
to New Jersey Manganese Company. By November of 1918, an Annandale train agent informed a
NIGS geologist that only two carloads of ore were shipped and a further two carloads remained
along the tracks (note on file at NJGS). Everything at the mine was abandoned. Hewitt (1921)
listed the total output of the mine in 1918 as 64 tons. No value of ore was given.

The last public inquiries on the manganese mineralization occurred in the later 1930's.
Correspondence between AR Archer of Somerville, NJ, EP Earle of New York City and Meredith
E. Johnson, the New Jersey State Geologist, shows the desire for further information on the geology
of the manganese. Background information on Archer and Earle is lacking. Johnson's response,
dated May 24, 1938, to Archer's original letter (currently missing from the NJGS files) explains the
location of previous published descriptions of the site along with a recent field visit by Johnson. He
listed the exposures as poor with no mineralization found greater than 3 inches. Johnson described
the host rock as "highly compressed shale beds of the Martinsburg formation" and had no opinion
on whether the mineralization is primary or secondary. He further stipulated "From a commercial
standpoint the possibility of mining the ore does not at present appear very hopeful. The
manganese ore does not constitute more than 5 to 10 percent of the rock that would have to be
mined in order to extract it and, of course, the percentage of manganese would be less than one-half,
or say a maximum of 5 percent of the material to be mined." He did suggest a thorough program of
diamond drilling before abandoning the site. The missive ends with a mention of a second
mineralized zone in a "borrow pit adjacent to the main highway about 1-1/2 miles west of Clinton."
The Clinton Block Quarry appears to be the location of the second zone alluded to by Johnson. No
other information is given.

Archer responded to Johnson's comments in a letter to Earle dated Junel0, 1938. He agreed
with Johnson concerning the discouraging circumstances surrounding the initial site but added the
possibility of mineralization in the graphitic rock to the northeast (possibly that queried by Thomas)
and on the grounds of the Clinton Reformatory (presently the Edna Mahan Correctional Facility for
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Women). Speculation on manganese mineralization according to Archer rested on "soil showing
the distinctive purple coloration... which points to a wide distribution of the impregnation." Archer
did not recommend the use of private funds in manganese exploration of this area but did "consider
the favorable chances quite sufficient to warrant thorough examination with the use of Federal
Government funds as part of our national defense economy." Johnson agreed with this assessment.
No further communication exists of this inquiry.

On August 29, 1940 Meredith Johnson released a "special feature story” to an unknown
source entitled "Occurrence of manganese ore in New Jersey". In the manuscript he described the
Clinton site and speculated on it's origin. He delineated manganese occurrences on two hilltops
(Clinton site and the borrow pit to the west?) and suggested secondary enrichment as the mode of
origin, The process, according to Johnson, included initial dissolving by ground water of an
originally diffuse manganese mineralization from overlying sediments. Concentration and
redeposition of the manganese under proper conditions followed. Johnson theorized the presence of
other, possibly richer deposits "beneath the barren capping of younger Triassic rocks which covers
the Ordovician shale south of a curving line which runs through Allerton, Clinton and the former
railroad station at Grandin, halfway between Lansdowne and Jutland." No other data were found on
this manuscript.

Thurston (1951) produced the first and only detailed study to date of the manganese in
Clinton. He placed the deposit, which he called Clinton Point, within the Martinsburg Formation.
An atypical assemblage of rock at the site as compared to the Martinsburg of the Kittatinny Valley
area was noted. He described the ore as thin discontinuous stringers following fracture planes
within the shale and as thicker veins showing a microscopic boxwork appearance. The main thrust
of the study was to identify the manganese mineralogy and describe limited examples of the ore
habit. Pyrolusite and psilomelane comprised the ore minerals (Thurston, 1951). The deposit was
suggested as formed through supergene enrichment though no detailed analysis was given.
Thurston (1951) considered the overlying Paleozoic shales (Jutland Sequence) as the most likely
source rock for the manganese. Other secondary sources included the Highlands and even less
likely, the Mesozoic igneous units.

More recent studies of the region have attempted to elucidate the geological setting of the
Clinton site. Markewicz (1967) mapped the geology of the High Bridge quadrangle, including the
location of the manganese deposit at a scale of 1:24,000. He agreed with the supergene enrichment
theory proposed by Thurston (1951) and showed possible source rocks for the manganese.
Markewicz placed the host rock of the Clinton deposit within the Jutland Member of the
Martinsburg, a new member he designated. Analysis of weathered limestone layers and lenses
showed 5 to 15% manganese oxides present. Reference was made to the limestone undergoing
manganese enrichment through percolating meteoric waters. Markewicz (1967) indicated a shallow
shelf as the depositional environment for these limestone layers occurring in the middle of his
Jutland Member. A direct correlation exists between the Jutland Member as outlined by Markewicz
(1967) and the Hamburg Klippe of Pennsylvania (Markewicz, personnel communication 1997).

Lyttle and Epstein (1987) differentiated between the Martinsburg Formation and the Jutland
Klippe within the Clinton area. They stated the Jutland and Martinsburg as two unrelated units
without any overlap in time, but still mapped the Clinton manganese site as within the Martinsburg.
Jutland was only mapped farther to the west. The most recent mapping of Drake and others (1996)
and Monteverde and others (in press) placed the host rocks of the manganese mineralization within
the Jutland Klippe Sequence(figure 1).

The preservation of the mining activity at Clinton remains poor. Several of the original
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trenches have been relocated on the Beaver Brook Golf Course with the aid of a groundskeeper.
The largest of the relocated workings forms a filled elongated shallow depression approximately 15
feet long and 4 feet wide. It shows some subsidence at its southern end with a depression
approximately 4 feet in diameter and 3 feet deep. Loose blocks fill the cavity and show the
possibility of further subsidence. The second excavation has almost totally been closed. Only a
very shallow scar remains of the old mine activity. A small dump pile exists alongside the larger
hole that has been recently raided for fill material by the golf course groundskeepers. Material
collected from the site is red shale that portrays a great deal of fracturing. Manganese
mineralization occurs along both bedding planes and fractures. Thicker accumulations of
mineralization, up to 0.5 inches, occur on the bedding planes.

Recently other examples of manganese mineralization have been discovered within the
Jutland. During the early 1990's construction of a gas pipeline trench exposed continuous outcrop
over hundreds of yards in a northwest-southeast direction. It bisected parts of the sequence that are
younger than the host rock for the Clinton deposit. The mineralization is strata-bound and occurs as
thin lenses of a black manganese ore, generally following bedding planes. It is associated with
medium- to dark-gray, micritic limestone, and black and green shale and to a lesser extent red shale.
The manganese can reside along foresets in cross-laminated sandstones (K. Muessig, written
communication) and also as lenses on bedding. Unfortunately samples were not collected while
the trench was open so no further analysis could be performed.

GENESIS OF MANGANESE MINERALIZATION

Detailed study of the genesis of the manganese mineralization in the Jutland is lacking.
Previous workers suggested that supergene enrichment played the dominant role in the placement of
the manganese (Thurston, 1951; Markewicz, 1967; Meredith Johnson, unpublished notes). They
listed mixed gneisses and granitoid rocks of the Highlands and sediments within the Jutland as the
most likely sources for the manganese. Localized diabase intrusives of Mesozoic age were also
considered as a secondary possibility. Of these reports only Markewicz (1967) gave direct
evidence for elevated manganese concentrations as a possible source horizon. He stated that 5 to
15% manganese occurred within the "brown leached porous rock surface" in the thin-bedded
limestones within the middle section of the Jutland. The exact mineral species of the manganese
was not given. Markewicz (1967) suggested that the manganese percolated downward via meteoric
waters and solidified along fractures within the shales. He stated that some of the manganese also
enriched still lower limestone layers. It is unclear in this model whether the manganese originated
as a primary accumulation during limestone deposition of the Jutland and later remobilized to the
present location by supergene enrichment, or the manganese originated from an unidentified unit
and moved through the Jutland by a several stage supergene process. An analysis of recent
literature on manganese deposition in marine sediments suggests a primary depositional sequence
of the manganese in either the limestone facies or the red green and black shales of the Jutland.
Limited subsequent remobilization of the manganese could have occurred through a supergene
process as professed by earlier workers.

Much work has been done characterizing the mode of formation of sedimentary-hosted
manganese deposits (Clavert and Pedersen, 1996; Frakes and Bolton, 1992; Roy, 1992; Okita,
1992; Dagupta and other, 1992; Delian and other, 1992; Force and Cannon, 1988). Manganese
deposits generally form in sediments laid down in shallow coastal basins offset from the open ocean
by topographic obstructions that hinder the replenishment of dissolved oxygen from deep-water
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currents. Therefore they are generally thought to be shallow water deposits (Roy, 1992) though
examples are known in turbidites and greywackes from deeper-water environments (Calvert and
Pedersen, 1996, Gross, 1990; Xu and others, 1990, for example).

Roy (1997, and papers cited therein) reviewed the mechanism for deposition of manganese
in sedimentary rocks within a stratified ocean basin. Two general processes exist to deliver
manganese to a marine setting. From a continental source, fluvial channels carry the eroded
products from weathered bedrock and dump these manganese bearing materials into the near shore
environment. Manganese is also directly input to marine surroundings through hydrothermal mid-
ocean ridge systems, mid-plate secamounts and subduction related island-arc settings (Iijima and
others, 1990; Liu, 1990; Nath and others, 1997; Roy, 1997, Varentsov and others, 1990).
Manganese introduced hydrothermally may disperse thousands of kilometers from its source (Roy,
1977). Once in the marine environment the manganese needs to intensify greater than 200 times the
average crustal concentration of 0.15 percent (Force and Cannon, 1988). Average concentrations in
marine sediments range between 0.17-0.38 percent manganese (Baturin, 1988). A stratified ocean
aids in enrichment of manganese. Dissolved manganese consolidates in the deep anoxic water layer
due to Eh and pH conditions (Force and Cannon, 1988). The metallic ions move to the interface of
the anoxic-oxygenated water by vertical advection-diffusion. Above this interface, the manganese
oxidizes to a manganese oxyhydroxide solid. This particulate matter settles back through the
interface where it again dissolves. The degree of precipitation of the manganese compounds relates
to the amount of mixing in the water column (Force and Cannon, 1988). Actual deposition of the
manganese only occurs where the redox front intersects the sloping basin margin. Preservation of
the precipitate requires the newly formed mineral to intersect the basin bottom before crossing the
redox interface. Force and Cannon (1988) suggested the manganese crystallized in an oxide habit
or within carbonates depending on the pH and Eh conditions of the environment. Oxide facies
develop on margins under oxygenated conditions and at the oxic-anoxic interface (Maynard and
other, 1990) in shallow water while manganese bearing carbonates form on either oxic (Frakes and
Bolton, 1992; Force and Cannon, 1988) or reduced substrates in deeper water. Roy (1997) stated
that manganese-rich limestones are the most susceptible for remobilization and subsequent
supergene enrichment in the weathering zone.

Others suggest a different interplay of the redox front not necessarily within an initially
stratified ocean. Calvert and Pedersen (1996) stated that oxyhydroxides of manganese form in oxic
environments while manganese carbonates precipitate in anoxic conditions within the sediment pile
directly beneath the oxygenated waters. They suggested that the deposits originally formed in
oxygenated conditions. Due to rapid burial of organic material and slow resupply of oxygen by
either diffusion or irrigation, conditions become anoxic at relatively shallow depths in the
sedimentary layers (Calvert and Pedersen, 1996). Microbes utilize the oxygen in the sediment in
breaking down the organic material thereby creating the oxygen deficient conditions within the
sediment pile. Sediments formed under these conditions display a unique reddish to dark brown
outer layer (oxygenated) which grades down to olive-green sediments (reducing). Manganese and
iron oxyhydroxides are present in the reddish surface layers. Roy (1997), in a review of
Phanerozoic manganese deposits, stated that manganese oxyhydroxide might evolve early before
undergoing reduction during the process of organic oxidation that leads to manganese carbonate,
similar to the theory stated by Calvert and Pedersen (1996).

Ground water has also been shown to influence the formation of a manganese deposit during
diagenesis. Force and others (1986) proposed a model whereby the mixing front between fresh and
saline ground water influenced the type of manganese mineral phase to crystallize. The model
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consisted of initial deposition in an oxygenated environment that recrystallized during diagenesis
under an anoxic front governed by ground water. They gave an alternative hypothesis where the
ground water front could be responsible for the first introduction of the manganese to the region.

Roy (1997) further associated the stratified ocean and thereby the manganese deposition to a
globally warmer paleoclimate concomitant with marine transgressions. Xu and others (1990)
correlated a marine transgression caused by glacial melting as responsible for deposition of the late
Proterozoic deposit in the Datangpo Formation of south China. They proposed a generally cooler
climate than that of Roy (1997). According to the warmer climate model, ocean water mixing stops
due to the shutting down of deep-water currents such as the North Atlantic Deep Water. This lack
of mixing of deep ocean currents with the ocean margins creates the development of stratified ocean
basins. During subsequent transgressions, waters flood across shallow continental regions. These
ideal circumstances cultivate increased biologic activity in the newly flooded areas. An
augmentation in organic activity enhances the supply of dead matter to the deep-water environment
and the basin floor. Break down of the carbonaceous material utilizes all the available oxygen and
strengthens and enlarges the anoxic environment (Frakes and Bolton, 1992). Decomposition of the
organic rich sediment in an anoxic environment leads to the development of black shales. Roy
(1997) reviews the association between black shale basins and manganese mineralization in the
various models of manganese deposits. It creates a vertically stratified sequence of manganese
oxyhydroxide in the oxygenated layer, followed deeper to manganese-rich carbonates at the oxic-
anoxic front and finally black shales in the anoxic layer. Others suggested that deposition of black
shale does not mandate anoxic conditions. Initial formation could occur in an oxygenated
environment so that the anoxic event happening within the sediment layers themselves (Calvert and
Pedersen, 1998).

DISCUSSION

Did the manganese in the Clinton site originate as a primary feature of the Jutland
Sequence? Although a detailed study needs to be completed, several characteristics of the Jutland
allude to a possible answer. A potential source of the manganese exists within the Jutland as both
submarine volcanics and tuffs have been described in the Hamburg Klippe in eastern Pennsylvania
(Lash and others, 1984; Ganis, 1997), a unit often correlated to the Jutland (Lash and Drake, 1984,
Perissoratis and others, 1979; Markewicz, 1967). An exposure of bentonite has been discovered
within the Jutland. The bentonite could be a second location for one described by previous workers
(M.E. Johnson and H. Herpers, permanent notes on file at the NJGS). This places igneous activity,
and correlative elevated manganese content in the region during deposition of the Jutland.
Equivalent deep-water sedimentary deposits in Newfoundland also contain increased manganese
and other metals. Submarine igneous activity is responsible for dispersing the metal enriched
hydrothermal fluids into the ocean as recorded in the Humber Arm Allochthon (Botsford and
Sangster, 1990).

The depositional environment of the Jutland fulfills the criteria proposed for the manganese
models discussed above. Sedimentary structures including turbidites and disorganized limestone
conglomerate and glauconite, suggest an upper slope to possibly outer shelf depositional
environment for the Jutland (Flugel, 1982; Lash and Drake, 1984; Perissoratis and others, 1979;
Markewicz, 1967; Dodge, 1952). Dominant fossil assemblages include graptolites and conodonts
(Parris and others, 1995; Parris and Cruikshank, 1986; Repetski and others, 1995). Conodonts
found to date fall within the North Atlantic Realm, which consists of a colder, deeper water affinity
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then the North American Mid-continent Realm developed in the time equivalent platform
carbonates of the Kittatinny Supergroup (Karlins and Repetski, 1989; Repetski and others, 1995).

Both recent and historical study of the region encountered manganese in several locations
within the sedimentary assemblage (Johnson, written note; H. Herpers, written note; Markewicz,
1976, Muessig, written communication). It arises as a strata bound deposit, both along fracture
planes and bedding planes, in thinly interbedded, red, green and black shales and brown altered
limestone. Alternation of red and green shales supposes the changing of oxygenated and reduced
conditions. To date the manganese mineral assemblage has not been worked out in both the
limestone and shales. Samples of the shale bearing manganese exist but so far have eluded
characterization. Locations of elevated manganiferous limestone, as described by Markewicz
(1967) have not been refound. These sites must be located and mineralogy described to validate the
models proposed. Although supergene enrichment may have altered the location of some of the
mineralization, the stratabound nature of the deposit insinuates more of a primary origin. So far the
construction of interbedded red, green and black shale and limestone meets the models as proposed
by Calvert and Pedersen (1996) and in the review papers of Roy (1997, 1992). It is unsure which of
the oxidation front models, stratified ocean of Roy (1997, 1992) or within the sediment pile of
Calvert and Pedersen (1996) supplies the best explanation for the development of the deposit.

Most of the models propose a stratified ocean to allow the deposition of the manganese in
the sediments (Roy, 1992, 1997; Force and Cannon, 1988, Frakes and Bolton, 1992). Botsford and
Sangster (1990) in their study of correlative deposits in western Newfoundland found changing
conditions of ocean circulation. A stratified ocean developed during the late Cambrian and the
Arenig. The Tremadoc had more ventilated conditions from better ocean current conditions. ).
Botsford and Sangster (1990) suggested that the alternating conditions of a stratified ocean
controlled the deposition of manganese and other metals in the deep-water sediments. Cambrian
and Ordovician carbonates portray many cycles of transgression and regression (Koerschner and
Read, 1989; Read, 1989; Taylor and others, 1992). Warmer conditions prevailed during this time
period. This suggest that all the necessary criteria for manganese deposition as proposed by Roy
(1992, 1997) prevailed during the time period of Jutland sediment deposition.

CONCLUSIONS

The Clinton manganese deposit is a relatively unknown segment of the mining history of
New Jersey. Although it never arrived as an economic deposit, it did elicit interest during years of
armed conflict. It was initially thought to be hematite by the early explorationist. Geologists later
identified manganese as the ore. Previous workers identified pyrolusite, braunite and psilomelane
as ore minerals. Manganese ore developed in fractures and along bedding planes. Mining of the
ore in highly fractured red shale consisted of individual pits and a single adit. Historical documents
state that two train carloads were sent to the Bethlehem steel mill for analysis possible use in steel
production. Results proved unsatisfactory. The period of greatest development was in the years
1917 and 1918 when the price of manganese rose from the need for armaments in the later part of
World War I. During the 1930's the final interest in the deposit peaked. Previous workers stated
supergene enrichment as the method for metal emplacement.

Cambrian and Ordovician Jutland Sequence constitutes the host formation of the Clinton
deposit. It contains an interbedded package of red, green, and black shale and siltstone and
subordinate amounts of limestone and sandstone. Depositional environment ranges from upper
slope to outer shelf for the sediments. Manganese has recently been found in several other locations

109



in the Jutland as stratabound, generally parallel to bedding.

A preliminary assessment of the deposits suggests that the mineralization resulted from
primary deposition of manganese ore in to the Jutland sediments. Igneous activity supplied the
manganese to the marine column of water. Deposition formed under an oxygenated and reduced
interface. This could have developed in a stratified ocean as suggested by Roy (1997, 1992) or in
the sediments themselves as described by Calvert and Pedersen (1996). Clearly, further analysis
needs completion before a definitive mode of origin can be selected for the Clinton manganese
deposit.
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EIGHTEENTH AND NINETEENTH CENTURY COPPER MINING IN NEW JERSEY

J. Mark Zdepski
IMZ Geology
Flemington, NJ 08822

Copper extraction in New Jersey almost certainly began in prehistoric times. Early setters found
copper nuggets near Somerville and New Brunswick, the largest weighing 74 pounds. Copper
carbonate ore-minerals, common at New Jersey mines, are bright green in color and are easily
spotted by lay people. Aboriginal copper tools have been found in New Jersey, but aboriginal
mining sites are not yet known. Popular historical accounts credit Dutch settlers from Kingston,
New York with the discovery of the Pahaquarry Copper Mine near the Delaware Water Gap.
Although a road called Old Mine Road was built from Kingston to the Delaware Water Gap by
1700, no physical evidence of Dutch miners has been found at the Pahaquarry site. A Hollander,
Arent Schuyler, found a copper mine on his estate around 1712. Many New Jersey copper mines
were exploited by British colonists using Welsh miners. The Griggstown Mine was known to
have employed 160 Welsh miners during 1765. Ore was discovered during farming activity,
digging water wells, actual prospecting, and by excavation at New Brunswick after the
mysterious appearance "of a blue flame, about the height of a man" in a field. British Law
originally limited the processing of ores to concentrating by hand-cobbing; therefore, the product
was then shipped to Swansea, Wales. Later concentrating techniques included stamp mill and
roll crushing, followed by washing and, at Flemington during 1835, the use of buddies after a
table wash. Smelting at or near the mine became common during the nineteenth century. A 12-
stamp mill at New Brunswick was well-suited to native copper recovery, and employed a 1 -mile
long tunnel as a head-race for water power. The British smelting tradition employed roasting
followed by reduction in reverberatory furnaces. As early as 1784, a German smelter worker
produced copper near Somerville, most likely using blast furnace technology. The technology
employed underground by copper miners in New Jersey depended upon the mine-site, the
geometry of the mineralization and the local underground conditions. Initially open-cut mining
started a mine; however, at major mines tunneling, shaft sinking, drifting, crosscutting, raising
and stoping was necessary to extract the ore. Excavation went on by pick and shovel at some
mines, with hand-steel drill and blast techniques used as needed. Mine props were often
constructed from local timber. Stoping techniques included undercut, room and pillar, breasting
and gallery. Water control and ventilation both presented problems. Water was initially handled
by drain tunnels and air supply was achieved by ventilation shafts. The first steam engine in
America was a Neucomen atmospheric engine, used in 1753 to power Cornish pumps
underground at the Schuyler Mine. Steam-powered pumps, fans and compressors were widely
used during the 19th century. From 1830 to 1870, a burst of reports, investigation, promotion
and mining activity correlated with the discovery of the Michigan Keweenaw Peninsula copper
deposits in Michigan. The geologic setting of copper in basalt flows and in close association
with diabase dikes makes many New Jersey copper mines similar to those in the Michigan
Copper Range, an observation fully exploited by nineteenth- and twentieth-century stock

In Benimoff, A.L, and Puffer, J.H., (editors), The economic geology of northern New Jersey:
Flield Guide and Proceedings of the fourteenth annual meeting of the Geological Association of New Jersey, 1997, p 115-116
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promoters. In Michigan the initial investments exceeded profits by four to one, in New Jersey no
records exist, but this ratio is likely much higher.
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ROAD LOG OF THE ECONOMIC GEOLOGY OF NORTHERN NEW JERSEY
FIELD TRIP

Richard A. Volkert
New Jersey Geological Survey
CN 427
Trenton, NJ 08625
richv@njgs.dep.state.nj.us

Alan . Benimoff
Department of Applied Sciences
The College of Staten Island/CUNY
Staten Island, New York 10314
benimoff@postbox.csi.cuny.edu

John H. Puffer
Department of Geology
Rutgers University
Newark NJ 07102
jpuffer@andromeda.rutgers.edu

Robert Metsger
Retired, NJ Zinc Co.
bobmets@ptd.net

Warren Cummings
1191 Parkside Ave
Ewing, NJ 08618
zeotrap@aol.com

INCR. CUM. REMARKS

0.0 Parking lot of Marriott Hotel
0.0 0.0 Leave parking lot of Marriott Hotel on Route 10 East
0.6 0.6  Enter 1-287 North
2.6 3.2  Boonton Reservoir on right. From here north we repeatedly cross the trace
of the Ramapo fault that forms the structural boundary between the
Highlands on the west and Mesozoic rocks of the Newark basin on the

cast.

3.8 7.0 Low outcrop in median of conglomerate of Upper Jurassic Boonton
Formation.

1.5 8.5  Gabions here north on right contain local bedrock from quarries to the
north

In Benimaff, AL, and Puffer, JH., (editors), The economic geology of northern New Jersey:
Field Guide and Proceedings of the fourteenth annual meeling of the Geological Association of New Jersey, 1997, p 117-128.
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1.1 9.6 Steep roadcuts on left, and for next several miles, of mylonitic Middle
Proterozoic rocks along the footwall of the Ramapo fault. Note the strong
brittle overprints visible as slickensides and extensive fracturing of the
bedrock. Observe the anchor bolts, shotcrete, ditch below road level and
rock barriers for slope stabilization.

3.8 13.4  Exit I-287 North

1.7 15.1 Right onto Mathews Ave.

0.7 15.8 Bear left

0.1 15.9 Turn Left into Rock Creek Crossing

0.1 16.0 STOP1
STOP 1: GRAPHITE NEAR BLOOMINGDALE

The residential development here is situated in part over the abandoned
Bloomingdale graphite mine which was active in the late 19th century. At the present
time all of the original workings have been developed over. See Volkert (p. 24, this
volume) for a more complete description of the Bloomingdale mine.

Artificial cuts expose graphite layers trending N30° E to N55°E that vary in
thickness from a few inches to seven feet and occasionally contain locally abundant
pyrite. The Bloomingdale graphite deposit is hosted mainly by rusty-weathering biotite-
quartz-feldspar gneiss and pegmatite. Graphite occurs in the former as plates
disseminated throughout the rock and in somewhat more massive form in layers that are
conformable to foliation and layering. Graphite in the pegmatite occurs as large plates up
to 1 inch in diameter that form around, and are embedded in, feldspar grains mainly along
the contact with graphitic gneiss. Pegmatite lacks graphite away from this contact.

Lenses of light green, medium-grained diopside-rich rock (diopsidite) that grade
into diopside + plagioclase + quartz * titanite + pyrite gneiss are conformably layered
with graphitic biotite-quartz-feldspar gneiss and metaquarizite. Diopsidite contains local
disseminated graphite plates that coarsen along the contact with pegmatite. Thin veins <1
foot to about 2 feet thick of buff to light green, coarse-grained pegmatite occur along the
contact between graphitic biotite-quartz-feldspar gneiss and diopsidite. Pegmatite is
composed of two distinct mineral assemblages: 1) perthitic microcline + plagioclase +
quartz + biotite & graphite and 2) diopside + plagioclase quartz = titanite + graphite, X-
ray analysis shows the diopside in the pegmatite and in the diopsidite to be nearly
identical. These pegmatites represent local melt from biotite-quartz-feldspar gneiss and
diopsidite respectively.

Graphite layers in biotite-quartz-feldspar gneiss and diopsidite formed largely
through the metamorphism of carbonaceous material in the precursor sediments.
Pegmatite subsequently obtained carbon from these rocks and precipitated graphite along
its contacts and in other permeable zones.
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Figure 2. Site map showing Stop 1. From U.S.G.S. Pompton Plains, NJ 7.5°
quadrangle.

0.9 16.9 Retrace route to Route 23 North

0.3 17.2  Outcrop of biotite-quartz-plagioclase gneiss on left

33 20.5 Diorite outcrops on right and for the next several miles

53 25.8  Outcrop of hornblende granite of the Byram Intrusive suite

6.4 322 Charlotteburg Reservoir on left. Prominent topography on left(Copperas
Mountain) and on right(Kanouse Mountain) is underlain by Silurian
Green Pond Conglomerate that unconformably overlies Middle
Proterozoic rocks midway upslope. For the next several miles we are
traversing a major down-faulted synclinorium of predominantly Silurian
and Devonian sedimentary rocks of the Green Pond Mountain region.

0.2 324 Syncline-anticline fold patr on right. and anticline hinge in center median
in quartzite facies of Green Pond Conglomerate.

3.7 36.1 Oak Ridge Reservoir on left. Crossing the trace of the Reservoir fault that
forms the structural boundary between Paleozoic rocks of the Green Pond
Mountain region on the east and Middle Proterozoic rocks.

0.2  36.3 Deformed outcrop of amphibolite on footwall of Reservoir fault.

0.2 36.5 Oultcrop of pyroxene granite of the Lake Hopatcong Intrusive Suite on
both sides of road for next mile. Note the thick, rusty, sulfide-rich seams
on right.

0.7 372 More pyroxene granite

0.9  38.1 Outcrop of pyroxene gneiss on left

24  40.5 Outcrops of quartz-oligoclase gneiss of the Losee Metamorphic Suite in
core of major northwest-overturned antiform on both sides of road for next
couple of miles.
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2.6 43.1 Left turn onto Roeute 517 South
1.6 447 Right turn onto Passaic Ave.
0.6 453 Left turn into mine entrance

0.1 454 STOP2

STOP 2 - STERLING HILL ZINC MINE

The tour through the Sterling Hill Zinc Mine will be conducted by Robert Metsger
who was the chief geologist during the mines most productive years and during its final
closure in 1986. Robert Metsger is generally recognized as New Jersey’s most
distinguished mining geologist and we (the editors of this guidebook) are particularly
pleased that he has agreed to participant in this conference.

The mine, since its closure has been rescued from abandonment by Richard and
Robert Hauck who have converted it into a museum under their supervision. Although
the museum includes an excellent mineral collection in the “Exhibition Hall” together
with very interesting mill artifacts, most of our tour will focus on geologic aspects of the
marble hosted ore body.

/i = rua *’ ’) trv//// 2
Figure 3. Site map showing Stop 2. From U.S.G.S. Franklin, NJ 7.5 quadrangle.
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0.1 45.5 Right turn onto Passaic Ave.

0.7  46.2 Right turn onto Route 517 South

29  49.1 Continue straight through traffic light

0.4 49.5 Crossing over NJ Route 15

6.1 55.6  Outcrops of Allentown Dolomite on both sides of road
0.5 56.1 Continue straight through light onto Route 517 South
1.3 57.4 Continue straight through light onto Route 616 West
03 57.7  Turn right onto Sussex Mills Road

1.1 58.8  OQutcrop of Franklin Marble on right

0.5 593 Turn right onto Route 669 North

1.4  60.7 STOP 3 Plant Entrance - Medusa Minerals

STOP 3 LIME CREST QUARRY

We are grateful to Medusa Minerals Inc ,the new owner of the quarry, for
granting GANJ permission for today’s visit (November 1, 1997) to the Lime Crest
Quarry. Permission must be obtained from Medusa Minerals Inc., P.O. Box 217, Sparta,
NI 07871 for any future visits.

Exposed here at the Lime Crest quarry is the Franklin Marble. The quarry has
been in operation for more than 75 years, and the Franklin Marble that occurs here is
generally similar in all respects to that found at the type locality. The quarry has
expanded to include part of the microcline (Cork Hill} gneiss, that overlies the marble,
and the Cambrian Liethsville Formation. Other features of interest include faults, related
to the fold and thrust belt recently described by Herman et al. (1997), and the secondary
minecral assemblages that some of these faults contain. The Lime Crest quarry produces a
wider variety of crushed stone products than the standard group of construction
aggregates produced by most quarries. The white color and unusually coarse crystallinity
of the marble makes possible the fabrication of many additional materials with
architectural and landscaping applications.
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Figure 4. Site map showing Stop 3. From U.S.G.S. Newton East, NJ 7.5’ quadrangle.

0.0 60.7 Continue on Route 669 South

3.0 63.7 STOP 4 The Sulfur Hill and Andover Iron Mines

STOP 4 THE SULFUR HILL AND ANDOVER IRON MINES

Proceed cast down the mine road about 300 to the open trench to the south. This
is the Andover Mine (Figures 6 and 7). The Sulfur Hill Mine is located about 500 ft.
northeast of the Andover Mine. Excellent samples of several different sulfides and garnet
in a carbonate matrix can be found in the mine dump located between the two mines.

The Andover Iron Mine was worked from some time before 1763 until 1863 while the
Sulfur Hill mine was worked from 1855 until 1880 (Sims and Leonard, 1952). The
Andover Mine was abandoned when most removable ore was mined out, while the Sulfur
Hill Mine was abandoned because of problems with the high sulfur content of the ore.
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More ore was taken out of the Andover Mine during its 100 years of operation than the
Sulfur Hill Mine during its 25 years of operation and has left larger excavations. The

4540

%
\/@{/,;f . iiﬁ d 18160::;[_5 jTO;
\V i ;),

o I ML .\

23

4539
30 000
FEET

200/

74°45" ANDOVER 0.5 M.y |1 980,000 FEET

Figure 5. Site map showing Stop 4. From U.S.G.S. Newton East, NJ 7.5” quadrangle.

Andover mine consists of an open trench about 750’ long, 70’ deep, and 50° wide that is
partially filled in plus some underground workings beneath the hill at the NE end of the
trench (Figure 6).

The SE wall of the trench is a fault plain with common slickensides that have
generated a chloritized mylonite zone veined with quartz. The NW wall is also sheared
and highly altered. The foliation of the metamorphic host rocks strikes N35°E and dips
almost vertically.

The Andover ore is largely a red hematite ore with residual magnetite in a
chloritized, highly altered matrix. Sims and Leonard (1952) suggest that the hematite was
formed by supergene alteration of magnetite. The descending supergene solutions were
presumably the kind of low temperature and oxidizing solutions. The protolith of the
Andover hematite ore is probably Sulfur Hill type ore which consists of undeformed
coarse grained granoblastic rock. The ore resembles impure marble or skarn and is
composed of clacite, garnet, magnetite, pyroxene, and pyrrhotite in widely varying
proportions with accessory black sphalerite, galena, chalcopyrite, and molybdenite.
Several similar iron oxide deposits occur in the Franklin Marble some of which have been
described by Kastelic (1979) although most are not as richly mineralized with sulfides as
the Sulfur Hill Mine.

The geology of the Andover area has been mapped several times with widely
differing interpretations. The Franklin Furnace Quadrangle mapped by Kummel and
others (1908) locates the Andover and Sulfur Hill mines in a north-east trending one to
one half wide band of hornblende, pyroxene gneiss (Pochuck gneiss) that is parallel to a
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band of quartz oligoclase gneiss (Losee gneiss) located less than one half mile to the east.
Kummel and others map several thick lenses of Franklin Marble within the band of
Pochuck gneiss.

A much more detailed map by Sims and Leonard (1952) locates the Andover mine
in a narrow (200” wide) band of quartz oligoclase gneiss (Losee gneiss ?) and the Sulfur
Hill mine in a lens of carbonate “skarn” (Figure 6). Simms and Leonard map a band of
Microcline Granite Gneiss along Limecrest Road just west of the mines and bands of
pyroxene feldspar gneiss and amphibolite just east of the mines (Figure 6). Sims and
Leonard (1952) also interpret some of the highly chloritized rock exposed along the
Andover mine as a diabase dike and suggest that it intruded during the Triassic.
Additional evidence of diabase, however, has not been found during any of my
approximately 20 searches through the mine area.

Recent mapping (The Newton East Quadrangle by Drake and Volkert, 1993)
locates the mines in Microcline gneiss between two branching bands of Amphibolite
located about 300” to the north west and south east of the mine (Figure 7). They locate a
band of Marble about 1/4 mile east of the mines and biotite quartz oligoclase gneiss
(Losee gneiss) over 1/4 mile north of the mine. The Microcline gneiss is described by
Drake and Volkert (1993) as a meta-sedimentary, medium grained, grayish-orange to pale
pink, well-layered, and moderately well foliated gneiss composed largely of quartz and
microcline, and lesser oligoclase with accessory biotite, garnet, magnetite, and locally
sillimanite.

Map detail at the scale published by Sims and Leonard (1952) is not possible at the
scale published by Drake and Volkert (1993) and the absence of map conformity may not
be as extreme at implied by comparing Figure 6 with the Newton East Quad. The Drake
and Volkert (1993) description of Microcline gneiss allows for variable oligoclase content
and each of the three maps agree that amphibolites are part of the mine area. The
locations of a few samples that I have recently collected from the mine area are plotted
onto Figure 6. At least four lithologies are clear on the basis of careful mineralogical
identifications including sodium cobaltinitrite staining of K-spar:

1. Pyroxenite (mine dump samples)

2. Carbonate, magnetite, garnet, sulfide granulite (mine dump samples)
3. K-spar gneiss (locations 1, 2, 3)

4. Quartz oligoclase gneiss (locations 4, 5)
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Figure 6: Geologic map of the Andover mining district after Sims and Leonard (1952).

~-garnet-sulfide rock. On the basis of recent

The skarn unit here is a carbonate-magnetite

oligoclase gneiss and
and 3 are bedrock exposures

; locations 4 and 5 are bedrock exposures of quartz oligoclase gneiss.

»

2

3

mapping by Drake and Volkert (1993) there is probably less quartz-

more microcline gneiss than indicated. Map locations 1

of microcline gneiss
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0.0 63.7 END OF FIELD TRIP - RETURN TO HOTEL
0.8 64.5 Turn left onto US Route 206 South

58 70.3 Bear right and follow signs for I-80 East

1.2 71.5  Enter I-80 East

17.4 88.9 Exit onto [-287 South

2.2 91.1 Exit onto NJ Route 10 West

0.9 92.0 U-turm

0.7  92.7 Parking lot of Marriott Hotel
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